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' ('IVERVIEWOF TH "APPLICATIONS"RESEARCHREPORTS

).,,

-. Darrel L, WtI ] I am_
:- NhShtGoddardSpace F11ght Center

T'
r

,.: Volumes I, II and XII of the Early Results Symposiumproceedings
..... provide detailed Information regarding the evaluation of Landsat-4 HSSand TH

sensor performance and data quality, In general, both sensors were found to
; be operattn9 satisfactorily, and fully processed data products generated from
_ HSSand TH raw data are of good and excellent quaZlty, respectively (see
: Alford, Barker).

:. The excellent qualtty of the very first TH data products was a boon
;.. for those researchers who were primarily Interested In evaluating 174data from
:. an "applications" perspective. In other words, the excellent qual!_ of the

.... data allowed these researchers to proceed dtrectly wtth applications analyses,
without spending a significant amount of time applytng vartous corrections to

_: the dat:a. The early results derived from the applications-oriented assessment
".".-:'-_.:. of TM d_L._are presented tn thts volume (t.e., Volume I.V).

:..,,.:.:"•

".:: A total of twenty..four papers are contained tn Volume IV. They cover
.:., a full range of research activities, which have been sun,nartzed tn Table IV,1
:._., under the following headings: discipline spectftc applications; comparison of

- .._.-- results obtained from TH versus HSSdata;evaluation of sensor perfomance and
_._:_.. data qualtty; and presentation/utilization of new data processing, analysts or
,:',. dtsplay techniques. By reviewing Table IV.l, each reader can quickly locate
_:i": those papers which contain information of greatest personal interest. It
.-,.. should be noted that thts summarytable was produced by me after reading all
:_ of the papers provtded to me as "applications-oriented." Individual

.,;; researchers may feel that I have improperly characterized the thrust of their
. work, or that thetr work does not belong tn the "applications" volume at a11.
:_ To those Individuals, I apologize. In the remainder of this overview, I would
:: : like to brtefly summarizewhat I feel were someof the key and/or unexpected

results presented in these papers.
:T..

" :':- Generation of TH Products for General Use, _ • i i ii i ,

-_,. Although manyapplications users may no ;Jant to be bothered wtth
..::... assessing data quality or applytn9 corrections to the data, they should be

somewhatfamtllar wtth the data processing procedures that take place tn
_ generating a fully processed CCT product from the raw TMdata. Barker, et al.
_. (1983), do an excellent Job of "presenting someof the features and
::. characte,lstfcs of various dtgttal tmage products used to produce the
:. generalZy available finaZ dtgttal image product, the C('T-PT" (see re1. II).
. The CCT-PT (i.e., fully processed dtgital image data) was the standard product
:_ type analyzed by the tnvestt9ators reporttn9 tn the volume. Therefore, I

encourage everyone to read this particular report tn order to becomefamtltar
_.....: wlth the characteristics of this data.

" " IV-I

/1.
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Sensor and Data I_ualI t¥ Evaluation
it

! Detailed summaries of the results obtained by assessing M$Sand TM
_ensar performance and data quality are presented in Volumes [, IX, ar,d l!I.

,i ttowever, several of the reports tn this volume also address data quality (see

:' Table IV.l). Most of these reportsbrieflydlscussthe coherentnoisei' problemsassociatedwlth all Landsat4 MSS data and some TM data. Three

Ir,vc,stlgatorsconductedmore In.depthas_essmQnt,sof data quality. MacDonald,
:; et el. (1983), assessed TMbond-to-band registration accuracy, geometric
- _eTity, and modulationtransferfunction(MrF). They found that; (a) TM
- band-to-bandregistrationfor the bands within the primaryfocal planewas
,- better than specified, but that band-to-band regts'Lratlon of bands tn the
_i:_ prtmary focal plane wtth bands tn the "cooled" focal plane die not moot

. L specifications (note: thts mtsregtstratton wet, due to a software problem
; whtch has been corrected; see Vol, Ill); (b) geometric performance of TM data,
_i wtthout ground control correction, exceeded thetr expectations (t.e., less
:- than 1/10 ptxel rms under an afftne transfomatton to a 7-1/2 mtnute U._;.G.S.
_ map); and (c) the MTF for TMband 5 agreed wtth prelaunch specifications when
?, the effects of cubtc convolution resampllng and the atmosphere were removed.

- !i Btzze11 and Prtor (1983) also evaluated various aspects of 1_1data quallty.
" They dtscuss their ftndtngs ,'elattve to the expected Improvements to be gatnod

t i wtth TMdata "both relative to the MSSand on tts own mertt." They concludedthat "the TM sensor and associated ground processing are performing equa, "

i;i;Ii1 the htgh expectations and wtthtn advertised specifications" and that "the
overall TM system ... showsmuchpromise for benefits tn future analysis

• actlvltles."

i?l,, Price (1983) took a totallydifferent approach In a_._._' _ta
:_-I quality. He presents a very interesting assessment bast': :, ,_.__...,=rlson of

°_:_" the information content, or entropy, of simultaneously ac _=,_.edT); and MSS
L_ data for a numberof sub-lmageareaswithin a represent_tI",eugrlcu;tural
°_,I scene. He found that "the information content of all bands of MSSand TM ts

considerably below the potential capability of the sensor/transmitter system.• Thts results from the bunching of data tn a moderately narrow Gausstan
_:) distributionabout a mea,;value In the lower half of the dynamicrange of each
i:ii instrument." However, Price went on to conclude that In general "the results

" "the_ are more encouragingthan expected, new channels (1.o.,TUB and TM7)
". '_ have greater values of H (i.e., information content) than the visible bands,"
"i! and that "these new channels provide not Just a marginal improvement, but a
_I substantial gatn tn tnfor ttton."
"i

'_! TMVersus MSScompartsons/Dtsctp1tne Specific App1tcattons

ii The Thematic Mapper t s a second-generation el ectromechantcal scanner_ with numerous upgrades over the familiar MSS's. Of particular interest to the
i" user community were the improved spatial resolution, increased radtometrtc

;- sensitivity, refined locations and widths of the green, red, and near-Infrared
- spectral bands, and new spectral bands In the blue, mtddle infrared, and
:_ thermal infrared regions. Although pre-launch slmulatlonstudies tndlcated

that TM data would provide significant enhancementsover MSSdata for various
applications, a key question which needed to be addressed following the launch

:j of Landsat-4 was, "Would the spectral, spattal, and radtometrtc Improvements
, :! incorporated tnto the design of the TM sensor result tn improved capability to

) i Iv-2
i

00000001-TSA14



, extract useful information from real TH data, as comparedto the MSS?" Key
results of Investigator efforts to answer this questionare summarizedIn thts

" ' section,
'p

. _ The Landsat-4 spacecraft configuration permits the simultaneous
- =_peratton of both the HSSand TR sensor systems. This capabtl ]ty
_:,_ significantly reduces the numberof variables which must be addressed when
. making comparisons of the advantages or disadvantages of one sensor

, configuration versus the other (l•e• both sensors are looking through the
• _ sameatmosphere at the same ground cover conditions)• Therefore, if
. simultaneously acquired data are analyzed in a consistent manner, any
:. differences in the results obtained should be (primarily) a function of sensor

charactertsttcs•
_; ,

.. NumerousLandsat Image Data Ou.,ltty Assessment (LIDQA) investigators
:; uttlized simultaneously acquired TH and HSSdata to compare the advantages and
:_..:- disadvantages of the new instrument vis-a-vis the old. The primary meansof
:! comparing data from the two sensors involved the classification of each data

set into general land cover/land use categories (or other discipline specific
_.;i: cat._gortes), followed by comparisons of the results obtained. It should be
.: noted that although the overall approach to comparing the sensor data was
"i:. common,the rigor of the actual analys,.=svaried over the entire range from
: strictlyqualitatlveto quantitativeand/ortheoretical• To the best of

) ..':L. knowledge, none of the investigators found HSS to be better than TH data for
__" their particularapplication,a few found no significantadvantagein havingjT
: ll_data over HSS, but a vastmajority+ound IIIdata to be significantlybetter
i!" thanM)S data for their particularapplication. In general,the LIDQA

investigators concluded that, of the three key sensor parameters (i.e.,
-!!:ii! spectral, spatial, and radiometrtc resolution), the _'s improved spectral
:_:" resolution was the parameter of greatest significance, particularly the
: availability of the two middle infrared bands• However, nearly an equal
._ numberof investigators felt that the TM's improved spatial resolution was the
_:..- most significant factor that the TM sensor design has to offer. Assessments

---;_:' of the contribution of improved radtometric resolution (i.e., signal-to-noise
,:. and quanttzatton) were virtually non-existent.

;f Htlltams, et al. (1983), presents a statistical technique which can
" be uttltzed to tsolae-_d quantitatively assess the impact of key sensor
_ parameter on classification accuracy• Utilizingthts technique in conjunction
:. with November2, 1982 Landsat-4 TM data of the Washington, D.C. area, they

_:= concluded that the "lT|'s improved spectral and radtometrtc capabilities each
had a significant, positive impact on classification accuracy as comparedto

:!_: the MSS. They also found that the TM's improved spatial resolution had no
i:_:.- significant impact, either positive or negative, on classification accuracy•
z - They felt that the lack of a significant, positive impact was primarily a
L.'_- function of the inability of standard per-point classifiers to take advantage
? of the significantamountof additionalinformationcontainedIn flner spatial

_- resolution data Indeed, the advantages of finer spatial resolutiondata can
be t'eadtly verified by simple phototnterpretattve comparisons of

_, . simultaneously acquired TM and MSSdata• Several investigators concluded that
, = phototnterpretatton of 114imagery could be used to update land use maps (at
). scales up to 1:24,000) or to replace high altitude aircraft photography for
=,::. certain applications• For example, quattrocht (1983), stated that "In many

Y
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situations, it may in fact be advantageoldsto bypass digital classification of
the data and employ interpretation methodologies to derive the required
information•" He went on to say that "••• a town the size of Union Ctty
(i.e., Tennessee, pop. approximately 15,000, wtth about eight square miles
within tt_ ctty limits) could barely be discriminated through

-;_ phototnterpretatton, let alone be digitally classified as an urban area, from
MSSdata. Yet, with the TM, it is possible to classify co,mponentsof the ctty

' and visually locate and discriminate individual buildings•

•: St gnl ftcant advantages assoctated wtth the TH's spectral resol utf on,
.:" particularly the capability to makemeasurementsin four distinct regions

within the electromagnetic spectrum (i.e., vtstble, near IR, mtddle ZR, and ,
" thermal IR), were reported for every major discipline area• The biggest

contribution of "new information" ts coming from the two mtddle IR bands
:-,.i_ (i.e., TMband 5 (1.55-1•75/_m) and _ band 7 (2•08-2.35/_m)). For example,

DeGlorta and Colwe11 (1983), reported the abtllty to sep'arate sugar beets from
': alfalfa using _ band 5, whereas no significant difference in the spectral

J "_ response from these two crops was apparent in the vtsible and near IR bands• 'i
-:: Ouattrocht (1983), compared agrt cultural crop classJ ft carton accuracy dertved
_: from a three-data, multitemporal MSSdata set with a single-data TH scene, and '

found that the single-data TM results were 17%better than those for the
::: _ multttemporal MSS• Not only were the TH results significantly better, but one

TMacquisition replaced what could only be achieved with multitemporal MSS
-._:_: data• MacDonald, et al. (1983), performed a classification of soybeans using
:::i'i_ TMdata, both wtth an--_-£d-wtthoutthe middle IR bands. They found that there _ q ,i
-__,. a 25%improvement in soybean classification accuracy when the mtddle IR ban,_
._, were uttlized They also found that the classification accuracy for sorghum i'
:'_: was significantly enhanced by using the thermal band data. Btzzell and Prior ;
-:_ (1983), analyzed TH data primarily from an agricultural applications
:::_, point-of-view and found that: (a) the best three bands for the separability ;
:-:ii_ of classes always included at least one band from the visible, near IR, and i:

mtddle IR region, and (b) tf no mtddle [R band was used in classification the
...... overall performance was significantly degraded. Sadowskt, et al. (1983),

stated that the mtddle IR bands may be especially useful be_-auseof: (a) the
•- large range of variability in digital values found for five separate land

:_ cover classes, and (b) low correlations with other spectral bands for
_:. vegetated land cover and water. They also stated that low correlations
_. between the blue band (TM band 1) and other spectral bands suggest tts uttltty

' for studying variations within areas of water as well as vegetated land i
_;: areas.

• Dozier (1983), confirmed the uttltty of the mtddle IR bands, i
:i_ particularly TH band 5, for discriminating snowand clouds. For geology :

:: applications, Abrams, et al. (1983), reported that color composites produced
from real TH data con_earlter results derived using aircraft simulated

_ TH data; namely that the 2.08-2.35 I_m band was useful for discriminating areas
__ of hydrothermal alteration. As reported earlier, Price (1983), also found the

middle IR bands to contain a substantial amount of information. He also
cautions data users against routinely using the thermal IR data in conjunction
with the reflective band data because " ... the phystcal processes accounting

: for radiance values in the thermal IR are quite different from those tn the
- vtstble and near IR."

.,',"
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) ._. In summary,TMdata were found to be significantly better than MSS
.= data for discipline specific applications by a vast majority of the

_- '. investigators• Spectral and sparta1 resolution improvementswere the key
F: factorsmostoftenacknowledged•Photolnterpretatlonof TH imagerywas
-_. conductedby numerousinvestigators to realize the full benefit of the finer

: _"- spatial resolution data• (Note: Sadowskt,et al• (1983), conductedimage
" interpretationteststo detemlnewhichTH ban-h-d-_olorcompositecombinations

i":: weremostpreferredby interpreters.)Thesignificanceof theavailabilityof
_"_ spectralinformationfromthemiddleIRregionwas repeatedlysubstantiated.

_:,":":_ The reader is cautioned that the analysis of ll_ data with techniquesdeveloped
.: duringthepastdecadeusingMSS datawillnot alwaysleadto significantly
:-t better results than onecould obtain wtth HSSdata. Thecombinedeffect of
;.;_" morespectral bandsand ftner spatial resolution can lead to greater within
:" classvariabilitythatresultsin greaterspectralclassoverlapor
_o. confusion. However, thts effect maybe offset somewhatby the fact that the

) i:::ii_i: ftner spatial resolution results tn a greater percentageof "field center(t.e•, pure) ptxels" and a smaller percentage of "border or mtxedptxels."
_"_ Thedevelopmentof newor improveddigital classification techniques to take! e :,'._

i _:_ advantageof the vast amountof information contained in TMdata are needed.
...... ly p1 iq,- ._:; NewProcesstni_,Ana sis,, or Dis ay Techn ues

i .: .....:"

i '_; '_ As described, the TH's improvedsensorparameters have significantly
i >_:::i increased the amountof information contained in the data, and numerous
'"_<_ investigatorshavelookedat variouswaysto stripout thisinformationto
; placeIt in a readilydigestibleformat.Hostof thereportsin thisvolume

oo:_;:', describenewdisplaytechniqueswhichinvolvedtransformationfromred,green
_!_: and blue color space into hue, saturation, and intensity space. Haydn(1983)_
.:.:_:! discusses this type of approachin detail

i_t_ It should be noted that numerousinvestigators used principal:,:k. componentsanalysis techniques to transform the data in an attempt to reduce
ii ":')""":_:_:- data dtmenslonaltty, etc. This technique has beenwidely used for the past
)_,:i.: several years with MSSdata, particularly multttemporal data. Therefore, l
i__ did not consider it to be "new."

:_"' Summary,?,.

( Appllcatlons-orlentedusersof TM datahaveeveryreasonto be
i:/o:: excited about the possibility of opening up newhorizons using _Hdata. The
-_ii: data appear to be of excellent quality, and the investigations conductedto
i - date, although preliminary, substantiate the findings of earlter research
; conductedwith simulated TMdata. This volumecontains several excellent! .
;°i; articles which could serve as an atd to those whoare planning to analyze TM
_::7- data tn the future. The reader ts encouragedto read all of the articles in: this volume, but if time does not permit, please refer to the summarytable

:-- (i.e., Table IV.l) to select those articles whichaddress topics of greatest
,, personal interest.

J
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TABLEIV.1
SUMMARYOFKEYTOPICSDISCUSSEDIN THEPAPERSCONTAINEDIN VOLUMEIV

Discipline Comparisons Sensor�Data NewProcessing,
Specific of 114vs. OualtLy Analysis, or

.InvesLt9at.ors Appltcart ons__ MSs DaLa Eva]uaLton. Dtsplay Techntques

Brumfield, eL al. Landcover/land
use (surface mtne

- mapping) .
ii Goodenough,et a_." Landcover/land X .... "..

use "

Jackson,eL al. Landcover/land X '
use

Markham Landcov'er/land " ' X ....
• use .......

M1ddleton, et al. Landcover/land ' X '" ,,
:.-' use i',
,:-..::_; Sadowskl,eta]. Landcover/land X X
•._ use
,..[ M>_ Tol1 Landcov'e'r/land X
"_ use
"_ W1111ams, et al. *' Landco_e'r/land..... X X
_: use
. Blzze11 and Prlor Agriculture, la'nd X X

cover/1and use
,_ OeG1orla and Ag_Iculture X X

Colwe11
L... MacDonalde et ai. Agriculture X X

Prl ce A.grlculture X X X
,:i Quattrochl Agrlculture,forest, X

urban/suburban
Thompsonee'Lal. Agriculture (S011) ' '

'_ Abrams,et al. Geolo9y. ' .... x x x
Everett, et al. Geo_o_ X
Ha_,den Geolo_ X
Short Geology
Gervln, et al. Hydrology, land ' ' X

_: cover/land use
--' Acklesonand _etlands mapping....

KIemas (submergedplant
conwnunltles)

Hardlskyand Wetlandsmapl)lng X
Klemas (1t ve btomass

esttmalton)
Dozler _ ' Snowmapping ' X
Schlebee e_:al. Waterqu,alIty''" x

IV-6

_ ®

...... 00000001-TSB04



.:_., _ N85 -23 1 8,8,

°

i';.i. IMPACTOF THEMATICMAPPERSENSOR

i_i,i.,"_ CHARACTERISTICSON CLASSIFICATIONACCURACY

L::_::"_ DarrelL. Willlams
_::_,_,..:: ,lamesR. Irons
:_....... BrianL. Markham
i :.:_-_. RossF. Nelson
.:_"' DavidL. To11

i.__
- _.:

i-:;:.... NASAIGoddardSpaceFllght Center

,::::.:, RichardS. Latty

i-/,: Universityof Maryland

•__

_._ MarkL. Stauffer
C

ComputerScienceCorporation

i "

: T,',_O8Data (_._e_" ,. ,,>i.. '

,' _ • .,.,,, ..'.

: IV-7

• (
00000001-TSBO(



Introduction

The second decade of land remote sensing from space was inaugurated on
July 16, 1982 wtth the successful launch of Landsat-4. Landsat-4 carries two
remotesensingdevicesin orbit:the familiarMultlspectralScanner (MSS)and a
new sensor,the ThematicMapper (TM),which was designedto providean improved
sourceof data to the remotesensingcommunity. Relativeto the MSS, the TM
offers finer spatialresolution,new and more optimallyplacedspectralbands,
and improvedradiometrlcsensitivityquantlzedover eight blts ratherthan slx
blts (Table1). These enhancementsIn sensor capabilitywere expectedto
significantlyimprovedata qualityand informationcontent,and therebyincrease
the utilityof the dat_ for earth resourcesobservations. Therefore,during
the firstyear of the ::;idsat-4mission,the substantiationand quantification
of the qualityand utllltyof the data acquiredby the TM sensorwas a primary
goal of the Landsat-4ProjectScienceOffice.

One method commonlyusedto assessthe relativeutilityof data acquired
by differentremotesensingdevicesIs to compareclassificationaccuracies.
Numerousstudiesusing data collectedby alrcraftmountedThematicMapper
simulators(TMS)were conductedprior to the launchof Landsat-4to quantify
the overallimprovementIn classificationaccuracyexpectedfrom TM data relative
to MSS data.1 However,few of these studiesattemptedto identifythe impact
or contributionof individualsensorparameters(e.g.,spectral,spatial,and
radlometrlcresolution)on classificationaccuracy. The effectof altering
individualsensorattributescan be anticipatedqualitatively.For example,
the additionof spectralbands can enablethe discriminationof previously
inseparablecategoriesby providingdata from portionsof the spectrumwhere
categoryreflectivltlesbecomedisparate. Similarly,improvedradlometric
resolutionand increasedsignal-to-nolscratiosmay facilitatecategory
discriminationby enhancingbetween-categoryboundaries. In contrast,the

reflnemen_of spatialresolutioncan have offsettingeffectson classification
accuracy._ Finer resolutiontends to decreas_)he proportionof mixed pixels
and, thus, enhancesclassificationaccuracy.O,_ ClassificationIs hindered,
however,by @nJoccease of wlthln-categoryspectralheterogeneityat finer
resolutlons.O,o,/,o ,

The ThematicMapper representsthe resultsof an ambitiousresearchand
developmenteffort In whlch a11 of these major improvementsIn remotesensing
capabilitywere slmultaneouslyintegratedIntoone system. Classification
resultsobtainedfrom TM data are Indicativeof the Interactlonsof a11 the
sensorattributesoperatingsimultaneously,and thus, complicateda more
quantitativeevaluatlonof the effectsattributableto each IndlvlduaIsensor
Improvement.Thecapabllltyto derivesuch quantitativeinformation,however,
would slgnlflcantlybenefitscientistsand engineersIn definingsensorparameter
requirementsand in designingnew sensorsfor futureremotesensingmissions.

Wlth thls In mind, a groupof disciplinescientistswithinthe Earth
ResourcesBranch at NASA'sGoddardSpace FllghtCenter In Greenbelt,Maryland,
developedand conductedan experimentto quantlfythe effectof eachTM sensor
parameteron classlflcatlon_ccuracy. This paper discussesthe experimental
designand summarizesthe resultsobtainedusing TM data acquiredover the
Washington,D.C. area on November2, 1982.

IV-8
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Stu,d Site/Data  e  ri tton

.. Accurate, detailed ground reference informationwas an Importantcomponent
• of the study. To facilitate the collection and field verification of the ground

reference data, an area near Goddard was selected as the general study area.
__ This area is boundedon the west by Washington, D.C., on the north by Baltimore,

Maryland, on the east by the CheasapeakeBay, and on the south by northern
Charles County, Maryland (Ftgure 1), Stereo, color infrared aerial photography

"._ at a scale of 1:40,000 was collected over this area on July 13, 1982, Jus+
prior to the launch of Landsat-4.

.:, The area is characterized by a diversity of urban, suburban, and rural
land cover types. The western portion of the area contains numerousresidential
developments associated wtth suburban Washington, D.C. The entlre area Includes
intensive urban fringe development, suburban multtfamlly and stngle family
residential tracts, and low denstty single family developments, Numerous

-I: commercial support services such as shopping centers, Industrial complexes,
gravel quarrtes and airports are also scattered throughout the study area. The
area lacks heavy industry, but does tnclude the Fort Meadeand AndrewsAir

•_ Force Base mtlttary complexes. In addition, the region includes areas of i
agriculture and forest cover. The agricultural areas are primarily small,

_. scattered ftelds. Principal crops are corn, soybeans, and tobacco, wtth areas
-_ of pasture and grassland. The study stte tncludes the USDA/Beltsvtlle Agricultural
.:: Research Center. In terms of areal extent, forest ts the predominant cover

:_:; type, and consists primarily of mixed deciduous forest, mixed hardwood-conifer
and isolated conifer stands. The area also includes lowland vegetation

:_ communities associated with the ChesapeakeBay estuaries.

_- Although Landsat-4 was launched on July 16, 1982, cloud-free, seven-band
TM imagery of the entire study area was not acquired until November2, 1982.

_ TM and MSSimagery were collected simultaneously, and both data sets were of
:.. excellent quality (e.g., no cloud cover, minimal haze, spacecraft and sensors
' operatingnormally,etc.). However,the Novemberdata set v:asfar from optimal
-' for generalcategorydiscriminationas deciduoustrees were in fall coloration,

most agriculturalcrops'hadsenescedand many fieldshad been harvested. In
:., addition, total scene Illumination was reduced because of low sun angle

conditions, and therefore, the full dynamic range and quanttzation capabilities
:. of the TM and HSSsensors were not utilized. Nevertheless, a decision was

made to proceed with the analyses because: (1) tt afforded the first opportunity
:: to test the experimental design/methodology with real TM data; (2) a quantitative

__ assessment of the attributes of TM sensor parameters relative to MSSwas desired
as soon as possible; and (3) a ground reference data base for an alternative
are¢ could not be created tn a timely, cost-effective manner.

•" Procedures

The Experimental Destgn

The first step in the work presented here was to design an experiment which
, could isolate the effect of the increased spectral, spatial and radtometrtc

resolution capabilities of the TM sensor on classification performance. Ideally,
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:i i the capability to assell _he impact of each factor (I.e., sensor parameter)

{ Indlvldua_ly,and in all possible combinations,was desired• The work oi' Slgman
" ' and Craig with TM5 data suggesteda promising methodologybased on a multlfactor

analysis of variance (ANOVA)approach. The multlfactorANOVA approach permits;__

one to slmultaneously]nvestlgatethe effects and interactionsof two or more
...._ factors, and is thereforemore efficient than the traditionalexperimental

approach of manlpula_ng only one factor at a time while keeping all other
,, conditions constant•_u Thus, this approachwas adopted for applicationto actual

_.. TM data, because it permits the evaluationof the effect of three factors (i.e.,
_' spectral, spatial, and radlometricresolution)on classlflcationaccuracy,

where each factor has two levels (i.e., TM and MSS)• This is referredto as
:. a three factor, flxed-effectsANOVA design and requiresthe analysis of eight
, treatments. For thls study, each treatment consisted of a distinct digital
_._ image data set possessingthe followingcharacteristics:

A 30 meters/8 bits/6 bands (actualTM data)
._ B 80 meters/8 blts/6 bands
.... C _0 meters/6 bits/6 bands
_ D 80 meters/'_'_'l_-s/6bands_'._

__ i E 30 meters/8 bits/3 bands
,: F 80 meters/8 bits/3 bands

•.-_i G 30 meters/6 bits/3 bands
:::'_i H 80 meters/6 blts/3 bands (simulatedMSS from TM)

._L/.: (NOTE: Items underlinedare those factors which have changed relativeto
o._:_:i treatment A, where treatmentA consists of actual TM data.)

-_C_i Data sets for each of the eight treatmentswere created by degradingTM
jC i data (TreatmentA) to approximateMSS characteristicsfor each factor (e.g.,TM
_-_,_. data are spatiallydegraded to approximatethe coarser MSS spatial resolution)*
_,_. These data sets were then classified in a consistentmanner. The multifactor
_ ANOVAdesign enabled the statisticaltesting of the significanceof differences
...._ in accuracy between treatments. Thus, the testing resulted in a quantitative

_,_. assessment of the effect of each sensor Improvement,individuallyand in
:_,.-

...... combinationwith other improvements,on classificationperformance•

" Data Preparationand Ana1_sis

_-'," Several major activitieswere involved in preparingand analyzingthe data•
These Included: interpretationof the aerial photographyand digitizationof
the results to create a digital ground referencedata set; extraction of the TM

;J data correspondingto the study sites; preprocessingof the TM data to simulate
.._ MSS spectral bands, spatial resolution,and radiometriccharacteristicsas
,_," required by the ANOVA design; selectionof training and test plxels for each

cover type; clustering and classificationof the data; and an assessmentof the
<.. accuracles obtained for each data set.

-._ Photolnterpretatlonand Dlgitlzatlon. As previouslymentioned,color IR aerial
_:: photography at a scale of 1:40,000was acquired on July 13, 1982, Just prior
-- to the scheduled launch of Landsat-4. Nine frames were randomly selected for
z detailed analysis. Prior to photolnterpretatlon,a decls';onwas made to minimize
: the effects of distortions typically found toward the edges of aerial photographs
: by working with a sub-frame area designated by plus-or-mlnus50 mm from the

principal point of the 241 mm (nine inch) format photography The resultant
,:_ 100 mm square area represents roughly the center 20% of an entire frame and

_('NOYE: The assessmentswere made relative to MSS sensor characteristics,since
;;' the MSS Is the currently accepted "operational"instrumentwlth which the remote
" sensing community is most familiar.)
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_"" encompassesan area of approximately1,600 hectares. These 1:40,000 scale
_.i_• sub-frameareas were then photographlcallyenlarged by a factor of four tc

attain a nominal scale of I:10,000 and paper prints w_re produced, Clear
acetate fllm was laid on top of each photographso that the photolnterpretatlon

'_ results could be drafted directly onto the film overlay. A minimum mapping
'r_'

unlt criterion of 15 m (i.e., one-half the instantaneous-field-of-viewof the
TM) was u_ed to differentiatedistinct land cover categories, liowever,in the
case of agriculturalfields, the minimum mapping unit was utilized only to

; separate one field from another; no attempt w, made to delineatewlthin-field
_. variability. Using thls approach,seventeen Level II/III land cover/land

i'_._ use categories (Table 2) were identified,outlined and labeled. It should be
noted that the land cover/landuse categories are not always mutually exclusive
because of the inabilityto strictlyadhere to the 15 meter minimum mapping

- unit criterion in areas of high spatial variability,such as residential
• subdivisions.For instance, land use rather than land cover categorieswere

. used in situationswhere the land cover components of the categories (e.g., the
. roofs, lawns, trees, and concrete/asphaltareas of a residentialneighborhood)

_ occupied areas with spatial dimensionsapproximatelyequal to or smaller than
•-- the 15 m minimum mapping unit. The photolnterpretatlonand labelingresults

_:_,L/' were verified and/or updated by field visits and enumerationduring the last

i _i_' week in October, just prior to the TM data acquisition.
o_,;it. To reduce analyst bias and provide for accurate, efficientprocessing of

the data, the labeledpolygons on the acetate film were digitizedand geon_etrically
_'i_.! registeredto the TM data. The TM digital imagery served as the cartographic
-_: reference to avoid unnecessaryresampllngof the TM data. The registration
='._,. was accomplishedby matching control points in the TM data and the photography.

:'_' The control points were marked on the acetate overlays and were incorporatedin/,<

_i_ the digitizing process. At1 digitizingand registrationprocessingwas..... accomplishedby a contract vendor (ChicagoAerial Survey*)with comprehensive

_ software and hardware for automated digitization. Briefly, each overlay was
;_ placed on a drum scanner with a resolutionof 40 lines per millimeter. The
_'_ scanner generated a digital representationof the polygons In a raster format.
, 7 Each digitized llne was thinned to a width of one raster element. The raster
:,_ format data were converted to vector format data, and then, using the ground
....._- control points, registeredto the TM digital image data. Thls approach avoided
i_ the inaccuraciesinherent in the manual digitizationof the polygonswith a
....; hand-held cursor and dlgltlzettiontable.

:_ After creating the vector format data, each digitizedpolygon was labeled
. ' with the appropriateland cover/landuse category at an interactiveediting
_'_ station, lhese thematic data sets were transformedback into two files of raster
,_ d_ta for each interpretedphotograph. One raster flle contained cells representing
:'.' surface areas of 28.5m-by-28.Sm.** Thls flle could then be dlgltally overlayed
:LI'_ onto the four data sets having TM spatial resolutioncharacteristics(i.e.
,: TreatmentsA, C, E, and G). The other file contained 57m-by-57mcells which
._Ci could be directly overlayed onto the spatiallydegraded data sets (i.e.,

TreatmentsB, D, F, and H). These registered,digital, thematic data sets In
raster format thus served as the ground reference information.

•Company names are given for descriptivepurposes only and do not Imply
_ _ endorsementby NASA.

• **(NOTE: Although the spatial re_olutlon (IFOV) of Thematic Mapper Is 30m,
- :" plxels In the standard P-tape output product are resampled to a dimension

-_ of 28.5m-by-2B.5m. This Is done so that the data can be easily registeredto
_,/ _ the 57m-by-b7mMSS P-tape data by simple integer repllcation.)
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Extraction and Pre_roc_sslng of TMData. The TM data corresponding to th_ nine
_' randomly selectedstudy sltesworn extractedfr:_mthe orlglnalP-formatdata

tapes to facilitatesubsequentproc_slng (Figure2). Each extractedsegment
of TM data was 256-by-256p|xels In slze and containedall six bands of 3Um
resolutiondata. The thermalIR data, which are collectedat a groundresolutlon
of 120m,were omittedfromthis study due to the _Ignlflcantdifferencein
spatialresolution.

' The ANOVA design requiredthe originalTM data to be degradedspectrally,
spatlally,and radlometrlcallyto simulateMSS specificationsfor each of these
sensorparameters. However,the precisesimulationof MSS radiometry,spectral _
bands,and spatialresolutionfrom TM data is not possibledue to inherent
differencesin spectralband cutoffs,radlometrlcresponse,acrosstrackscanning
strategies,etc. Therefore,certaincompromisesor slmpllfylngassumptionshad
to be made in degradingTM data to simulateMSS characterlstlcs,and the

procedureswhich were used are describedbelow:

_ (i) SpectralSimulatlon- The spectralsJmulatlonof MSS was achievedby _
using only TM bands 2, 3, and 4, which was the best approximationavailablefor ,

-_ci the MSS complementof bands. TM band 2 (0.52- 0.60 _m) closelyapproximates
_ ' MSS band I (0.50 - 0.60 _m) and TM band 3 (0.63 - 0.69 _m) closelyapproximates
- MSS band 2 (0.60 - 0.70 Hm). TM band 4 (0.76 0.90 um) includesportionsof

MSS band 3 (0.70 - 0.80 um) and MSS band 4 (0.80- I.I0 _m). For vegetated i
i targets,which constitutea majorityof the cover types in the study area, TM 'I
- band 4 can be considereda good approximationof MSS band 4, as both cover il

major po{_ionsof the 0.74 I.I0 _m regionin which reflectanceis relatedto
_::_ biomass._ MSS band 3 Includesa spectralregionof transitionbetweenlow
._ vegetationreflectlvltydue to chlorophyllabsorption(endingat approximately
: 0.71 _m) and a regionof high vegetationreflectlvlty(beginningat approximately
:::_ 0.75 _m) and, for thls reason,Is not optlmalfor vegetationdiscrimination.

Therefore,the inabilityto simulateMSS band 3 was not consideredcritical.

_ (li) RadiometricSimulation- The radlometricanalyslsconsistedof a
comparisonof quantizationlevels. The MSS simulationwas achievedby mapping
the 0-to-255potentialblns for the TM data Into 0-to-63blns for MSS data
(i.e.,each TM datumwas dividedby four and roundedto the nearestinteger).
In takingthis approach,the simplifyingassumptionwas made that the dynamic
range and slgnal-to-nolseratiosof both sensorsystemsare comparablefor the

-_ similarspectralbands. Neitherassumptionswere preciselycorrect. Therefore,
this approachslmplyaddressesthe issue of six hlt versuseight bit quantlzatlon,

" ratherthan TM radlometrlcsensitivityversu__5 ,_adlometrlcsensitivity.

(III) SpatialSimulation- The simulationof t_3Sspatialresolutlonwas
achievedby computlngthe slmplearithmeticave,rage over a three-by-threeplxel
window of the TM data. The window was moved actjssthe image two columnsat
a time to simulatethe 57m along-scanMSS samplingrate relativeto the MSS 80m
IFOV. After moving acrossan image,the averagingwindow was incrementedtwo
linesto approximatethe geometricresampllngof MSS data to reducethe 80 m
nomlnalpixel dimensionin the along-trackto 57 m. Thus, the 57m-by-B7mpixel

_ formatof the standardMSS P-tapeproductdistributedby EROS was simulated.

An assessmentof how well the above proceduresactuallysimulatedMSS
sensorperformancewas possiblebecauseLandsat-4MSS data were acquired

,> slmultaneouslywith the TM data duringthe November2, 198Zoverpass. By
comparingresultsobtainedfrom data set H (i.e.,simulatedMSS data fromTM)
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! with results obtained by analyzing real MSSdata (which was simultaneously
obtained), the valtdtty of the procedures used to degrade TM data to simulate

; MSS characteri_tlcscould be assessed. For example, if the simulationprocedures
were p_rfect,one would expectno dlf_erencein the classificationaccuracies
obtainedfrom eitherdata set• Thus, for the sole pt_rpnseof a_sesslngthe

: appropriatenessof the above simulationprocedures,a ninth data _et, referred
:_ to as treatmentI, and consistingof real MSS data, was appendedto the elght-block
;" ANOVA design• The resultsobtainedby comparingtreatmentH (simulatedMSS)
." with treatmentI (realHSS) will be presentedin the resultsand discussion

sectionof this paper.

..,i, §91ectiongf Trainlnuand Test Pixels. T_ainingand test plxelsfor each of. t_le--1_d u"sec'ategor-¥:Fe_were needed fromeach of the eight data
set treatmentsin the ANOVA experimentaldesign The samplesobtainedfrom a
given data set were used for clustering,classification,and tabulationof

_ classificationaccuracyresultsfor that particulartreatment. To facilitate

' statisticaltestlngand to treat each class as equallyimportant,regardless
:i of the frequencyof class occurrencein the study area, an equal number of .
..:. trainingand test pixelswere needed for all land cover/landuse categories. _

: The selectionof samplepixelswas automatedusing the digitizedground
:_ referencedata previouslydescribed. Softwarewas writtento randomlyselect
__. an equal numberof pixelsfrom each land cover/landuse class in the ground

,_ referencedata; 55U pixelsper class were chosenfor the 57m data, and 2200 ill:-_, pixels for the 28.5 m data. The size of the samplewas limitedby the actual
!<_i! numberof pixels in the smallestgroundreferenceclass (i.e.,soybeanswas the _,
I-i, smallestclass' it contained_71 pixelsat the 57m resolution,and 2244 pixels
i_ at the 28.5m resolution).

i
r_:=.. TWO sets of randomsampleswere generatedin thismanner for each treatment
_. in the ANOVA design. Two replicateswere producedfor each sample set by
:" trainingand testingon differentsectionsof the sample. Hence, for a given

treatment,two samplesets with two replicatesper set resultedin a total of
four replicates. For a given replicate,4UO of the 550 randomlyselected57m

. pixels in each classwere to be used in clusteringto producetrainingstatistics.
The remaining150 pixelswere classifiedaccordingto the trainingstatistics

- for all classesand these resultswere used to test the accuracyof the +
._ classification.A similarratio of training(1600of 2200) to test (600of i
._, 2200) pixelswere utilizedfor the .i.8.Smdata sets.

Clusterin_and Classificationof the SampledData. Trainingstatisticsfor the i
'_ sampleddata describedabovewere derived'us'ingthe ISOCLSclusteringalgorithm.12

Clusteringwas performedseparatelyon each set of trainingpixels for each
,: landuse/landcover class from each treatment• The ISOCLSprogramparameters

were set such that the programbehavedas an iterative,point migrationclustering
algorithmwhere the inltialclustermeans tend to migratetowardsthe centroids
of the naturalspectralgroupingswith each iteration. The programparameters
were adjustedso thatthe programacted in a consistentmanner for a11 eight
treatments.No editingof the resultingtrainingstatisticswas performed(l.e.,
no mergingor deletingof spectralclasses). The intentwas to preventthe

-, ' incorporationof analystbias into classificationresults. Althoughtee lack
of editinglimitedclassificationaccuracies,the consistentapplicationof the

i-._i clusteringprocedurepermitteda more valid comparisonof classification
accuraciesbetweentreatments.

?

_: IV-13

O0000001-TSB12



I +., ....+__
'1: In all. _44 differentclustBrlngprocedureswere performed(eightANOVA
,: treatments,four replicatesper treatment,17 cover classesper replicate)
+ resultingin 32 differents_ts of trainin_statistics(eighttreatments,four

replicat_s).Each_ampl_of test pixelswas then cla_slfi_du_inQ the appropriate
_' set of trainingstatisticsand a per-pixelGaussianmaximumlikelihoodclassifier.
:- Classificationaccuracyfiguresw_re derivedfrom the test pixel remllts.

• Contingencymatriceswere generatedto displaythe numberof test pixels
:: correctlyclassified,along with errorsof omissionand commission. The sum of

the diagonalvalm)s (i.e.,tilenumberof correctlyclassifiedtest pIxels in
_ach cover class)in each matrixdividedby the total number of test pixels

_, providedan overallclassificationaccuracyvalue. Since the classification
,.... procedurewas repeatedfour times per data treatment,the fouraccuracyvalues
,._ per treatmentwere used to conductthe t_ee-factor ANOVA. The analysiswa_
,i performedusing the SAS ANOVA procedure.L_ This procedureallowedthe analysis

of both individualfactoreffectsand factorinteractions.
'i

".,_i Resu!,.ts a,ndDiscussion
._;"

, The overallclassificationaccuraciesobtainedfor the eight treatmentsin
...... the ANOVA design are summarizedin Table 3. For each treatment,the mean and
_:',_:, standarddeviationof the four replicatesdescribedin _ileclusteringand
,_,] classificationsectionare shown. The overallaccuracyvalues range from a
_:" high of 37.9% (TreatmentB; BO meter/8blts/6 bands)to a low of 25.7% (Treatment
,,- G; 30 meter/6bits/3bands),for a maximumrange in accuraciesof 12.2%. The
'_ averageaccuracyfor all treatmentswas 31%.

These extremel,/low accuracyfigureswere of concern. A carefulreviewof

_i.>_ all aspectsof the experimentaldesign and data processingrevealedno improper
_!:,: appllcatlonsof the selecteddata analysisprocedures. Keepingin mind that

_,.."_ the goal of the experimentwas to conducta rigorous,statisticalassessmentof
•:T differencesin classificationaccuracydue to data characteristics,and not to
".i_ maximizeclasslflcetlonaccuracy,the low accuracyvaluesare attributableto
+:;. the followingfact,_rs:(I)the experimentaldesign itselfwas a key factor
"_ since it was laldout so as to minimizeor eliminateanalystbias so that

differencesin cl,_sslflcationaccuracieswere solelyattributableto data

IZ characteristicsa_d not to analystskill; (Z) 17 detailedLevel IIllIIland
_ cover/landuse cl_sseswere delineatedand a majorityof the classesrepresented
-..i+_ "vegetative"cover conditionswhich were spectrallyquite similarto one another
? due to the time of year of data acquisition;and (3) the selectionof sample
: pixelsfor trainingarldtestingwas totallyguidedby the digitizedground

referencedata; therefore,"border"plxels as well as "fieldcenter"pixels
_i' were selectedand any minor inaccuraciesin the registrationof the reference
I:+T data to the TM data could have resultedin contaminatedsampledata (i.e.,
,_ samplesfor a given categorycould have come from differentcover types causing
....: "mixed"trainingstatistics).

As furthersubstantiationof the validityof the methodologyand results,
_" the impactsof (I) allowinganalystinteractionto edit trainingstatistics

Z_
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", prier to clas._Iflcatlor_,and (2) simplydecr_aslngthe numhBrQf landcover/land i
":. u,_ecate_]orle._warn brleflyInvn._tlgatnd,In the fir._ttest, trp.atmentA (l.p.,,
.o real TH data) wa_ re-analyzedus_nq ._tandardmp.thodol_gywh_rn th_ analystis

allowedto Intp.ractwith the computerto _dlt tralnlng,_tatlsticl,No now
tralninggslte._w_,rnchosenand 17 land cover/landu_. clas._e,_warp.malntalnnd.

,_.._ Cla,_slflcatlonaccuracyro._efrnm 3(3,7%to 62%• In the _econdte_t, the 17
....... Level ;;/Illcatp._orl_.._wen+ au,qr_.qat,_dinto flve Level I/I;catn_arle,_(l,e.,

....."_ water, crop,_,pastureand .qra._,_,fore,_t,and urban),and clas,_Iflcatlonaccuracy
..... b,ytreatment,a._well as averageaccuracyover all treatments,wa._calculated.
}, A._in the orlqlnalcake, no analy,_tinteractionduring trainingor cla_,_Iflcatlon
.t was permitted, The accuracyvalup.sfor the flw, cla._scase ran.qedfrom 5g,b%
l;_T to 71.7%,with an avera,q_value of (i5.7%,a._comparedto re,_pp.ctivevaluesof
"- 2b.7%,37.9%and 31% for the 17 class case. The cla._slflcatlonaccuracyvalues *'
':" obtainedin both of these additionaltests certainlyseemed reasonablegglven
- the groundrules of the experimentaldesign and the time of year that the data

iii_!,:., were coi lected.

_,, As previouslymentioned,the valldltyor appropriatenessof the techniques _,
_":ii}: used to degradeTNIdata to simulateMSS characteristicswere also evaluated "• ._i:,'. ' 'i

.:.;._ In this instance,real MSS data (;landsI, 2, and 4) acquiredduringthe November _,
i-i!:i 2, 1982overpasswere registered(and resampled)to the simulateddata sets, _
i_ _ and were subjectedto the same analysisproceduresas the simulatedMSS data.

_ The actua'_MSS datayieldeda classificationaccuracyof 70.5%,as comparedto
;-c_.i_.._ 26,7% for the simulatedMSS data (seeTable 3). This 6.2% differencein accuracy ,
,:_ .'., was in the expecteddirection(i.e.,slmulatedMSS was better)and was considered I
i_i_i" to be a resultof the followingfacts: (I) the real MSS data were subjected
_-:/i,:_- to an additionalregistrationand resampllngprocessIn comparisonto the
!ii!?!_"' simulated data sets, and thts may have slightly degraded the real MSSdata; (2) :_
i_:,'_.... known 11mltationsin the degradationprocessItself,e.g., the Inabllltyto ,I

__:_.. adequatelytreat slgnal-to-nolse,resultingIn the fact that degradedTM data':__.,:._,,

F)_::_:). is still superiorto MSS in slgnal-to-nolse;and (3) the qualityof,_andat-4 ,i_-;_,_,_, MSS data has been degradedsomewhatby coherentnoise in the system_ and this
_=:_:'_" is believedto have an impacton attainableclassificationaccuraciesin
;-j:_ .':
)_,,,. comparisonto degradedTM data, Thus, the compromisesor simplifyingassumptions
;,,,,_.=• that were made in degradingTM data to simulateMSS characteristicswere
:_., appropriate.A direct comparisonof real TH data with real MSS data (i.e.,
i_;. TreatmentA versusTreatmentI in Tabl_ 3) indicatesa 16•2% improvementIn
):-i_.:" favor of TM, as comparedto the IO% improvementindicatedby using simulated i
i.._,- MSS data. It shmildbe noted that TreatmentI is not a true componentof the I
_"_; ANOVA design,and, therefore,it wlll not be Includedin the remainingdiscussion• :

_::.• Followingthe tabulationof classificationaccuracies,the statistical i
_- testingof the significanceof the differencesIn accuraciesamongtreatments
i_i:}_i:" was conducted. The resultsare summarizedin Tables 4, b, 6 and 7. To reiterate,
"_" the factorsbeing evaluatedin the fixed.-effectsANOVA designwere: spatial-_}
_:i.- resolution(30 m versus80 m), numberof spectralbands (sixversusthree),and
_j. quantizationlevel (eightblt versussix blt) The two levelsof each factor
_) reflectTM and MSS sensorcharacteristics.
_ :

::.- Table 4 presentsthe analyslsof varianceresults. Significanteffects
[±._':,
_.. (at a 0.05 probahllltyof Type I error; _=0.05)were determinedusing the F-
,_;. test.,Starti,gat the bottomof the table with the interactionterms,we see
)_L" that the three-wayinteractionterm was not significant;however,the two-way
' _ interactioneffectsare all significant,particularlythe spectral*radlometrlc
_:_.:- interaction. This spectral*radlometrlcinteractionshows up primarilyas a
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largerincreasein classificationaccuracywhen going from thr_e bands to six J
bands at elght bit quantlzatlonrelativeto six bit quantlzatlon(i,e.,7.1% to
/.7% versus3,3% to 5.5%) (see Table 5).

Since the significanceof the interactionterms makes th_ interpretationof

the main effectsi%the_Dmodel les_clear,the individualtreatmentmeans were: pairwisecompared. Ifferencesin classificationaccuraciesbetweentreatments
•- which differedin only one factorwere analyzedusing the Tukey procedurefor

multiplecomparisons(i.e,,test the hypothesisthat differencesbetween
treatmentmean accuraciesare significantlydifferentfromzero at Tukey
_=O,O5). The increasefrom three to six spectralbands increasedclasslflcati.n

,_ accuracy3% to 8% dependingon 'no levelsof the other factors,and all ,
differenceswere significant(T_ble5). The increasein quantizatlonfrom six ,:

:', bits to eight bits also increasedclassificationaccuracyover the range from
_. 3% to 8%, and all differenceswere significantlygreaterthan zero (Table6). ,

However,the increasein spatialresolutlonfrom80 m to 30 m had mixed effects
: on classificationaccuracywithin the range of plus-or-minus2%, and none of
_ the differencesin accuracywere significant(Table7). i

_: These resultsstronglysuggestthat quantizationlevel improvementsand ,
: the additionof ,ew spectralbands in the visibleand middle IR regions(both
:_: affordedby the TM sensordesign)will result in improvedcapabilitiesto
<:LT,. accuratelydelineateland cover categoriesusing a per-pointGaus_lanmaximum ,

likelihoodclassifier. On the other hand, resultsindicatethat the increase ]

'" in spatialresolutionto 30 m does not significantlyenhanceclassification i1
accuracy.This resultmay appearsurprising,becauseside-by-sldevisual 1

_ii__., comparisonsof simultaneouslyacquiredTM and MSS imageryindicatethat the TM
-_-' data containsmuch more spatialdetail In fact, properlyenhancedTM subimages i

_<_ can be easilyconfusedwith high altitudeaerial photography. The "insignificance" k
of the improvedspatialresolutioncan be relatedto the fact that the experiment

--_,_. was structuredaroundthe use of a maximumlikelihood,per-pointclasslfier !i

_> which performsthe class assignmentssolelyon the basis of the spectral i
characteristicsof the pixel;it does not integrateany informationon texture,

. tone or the spatialcharacteristicsof the neighboringpixels. Anotherfactor
,. which may affectthe measureof spatialresolutionimportanceis the level of

detail associatedwith the groundreferencecategories. For example,within-
field variationsnot apparentin MSS data are now obviousin TM data, and the

_" groundreferencedata did not identifythese types of variations.These variations
" often representactualphysicalpropertiesof the target,and groupingthe data
,_ into broad c_tegoriesmay not take full advantageof the informationavailable

in the TM data. These factorsmay bias the resultin favor of the MSS and not
_ fully representthe spatialimprovementsof the TM which are obviousin side-by-

side visualcomparisonsof TM and MSS imagery. In view of these results,
e_hasls shouldbe placedon developinga thoroughunderstandingof the
characteristicsof fine spatialresolutlondata, as well as algorithmswhich
take betteradvantageof these characteristicsfor informationextraction. The

, remotesensingcommunities'perceptionof processing,analysis,and application
of remotelysenseddata, previouslystructuredaround the propertiesand

: characteristicsof MSS data, will need to change. This may includethe
._ redefinitionof categoriesand categorycharacterlstics,as broad landcover
:- classesmay not be appropriatefor use with fine resolutiondata. Without

furtherunderstandingof fine resolutiondata, digitalanalysiscapabilities
will benefitmore from new sensorswith enhancedradiometrlcsensitivitiesand
additional,welI-placedspectralbands than from new sensorswith finer spatial
resolution.
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Summary i

A fixed effect,three factor (two levelsper factor)ana|yslsof variance
experimentwas conductedto quantitativelyassessthe significanceof the
improwd spectral,spatialand radiometrlcresolutioncapabilitiesof the
Landsat-4ThematicMappersensorrelativeto the familiarMSS sensor, TM data
acquiredever the Washington,D.C. area on November2, 1982were utilized. The
originalTM datawere progressivelydegradedin spectral,spatialand radiometrlc
characteristicsto simulatethe MSS, and classificationaccuracieswere derived
In a consistentmanner for all eight treatmentsin the ANOVA design. Statistical
testingof the significanceof differencesin classificationaccuraciesbetween

_-_ treatmentsindicatedthat the increasednumberof spectralbands and the improved
quantizatloncapabilitiesaffordedby the TM sensordesignwould leadto (_
significantimprovementsin classificationaccuraciesattainablerelativeto ,i
MSS. In contrast,however,the improvedspatialresolutionprovidedby the TM
sensordid not enhanceclassificationaccuracy. This latterresultwas felt to
be more a functionof the type of classificationalgorithmsavailabletoday

i (i.e.,perpointdecisioncriterion),ratherthan a definitivestatementon _he
J benefits(or lackthereof)associatedwith finer spatialresolutiondata. This _'_
I can be substantiatedby simplephotointerpretationof simultaneouslyacquired L,

TM and MSS imagery. Thus, improvementsin the understandingand analysesof '
finespatialresolutiondata shouldbe developedprior to, or in concertwith,
the developmentof new remotesensingdeviceshavingeven finer spatialresolution
than the TM. In lieu of such developments,emphasisshouldbe placedon
increasingthe numberof spectralbands and improvingradiometricsensitivity
and quantization.
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ANALYSIS AND EVALUATION OF THE LANDSAT,,4 MSS AND TM SENSORS

AND

GROUND DATA PROCESSING SYSTEMS--EARLY RESULTS

Ralph Bernateln
Jeffrey B. Lotspioch

IBM Palo Alto Scientific Center

1530 Page Mill Road
Pale Alto, CA 94303-0821

1.0 INTRODUCTION " "
'1

ii

!i
The Landsat-4 was launched in July 1982, and contained as its payload an
advanced new sensor, the Thematic Mapper (TM) in addition to the Multlspectral _

Scanner (MSS). The TM sensor was designed on the basis of user requirements
defined at a NASA Workshop (Ref. I), and successfully built and launched into

._: space by NASA. This is the first of a series of papers reporting the results of

-'" a principal investigation activity under NASA Contract NAS5-27355 (Ref. 2). The
" purpose of the contract is to assess the performance of the Landsat-4 sensors

5' and the associated ground processing, and to recommend .improved algorithms and

:, procedures to process the data. In addition, image science experiments to
' improve information extraction were conducted and are included, This paper

provides results to date, recommendations for change,,iand improvements to the
processing of the data, and a discussion of work planned for the future.

2,0 LANDSAT-4 SENSORS' CHARACTERISTICS

The MSS sensor p_,nctple of operation is discussed in detail in Reference 3, and
the TM in Refe._nce 4. These devices use mirror systems and detectors to

convert the earth radiance and temperature values into digital numbers that are
transmitted to the ground. The MSS sensor has 24 detectors, 6 per band and the

- TM has I00 detectors, 16 for each visible and infrared bands and 4 for the

= thermal band, The MSS and TM sensor performance were evaluated by studying both
the sensors and the characteristics of the data. This included information

" content analysis, image statistics, band-to-band registration, the presence of
failed or failing detectors and sensor resolution. This section will address

these categories.

2.1 Sensor Data Entropy

The Landsat-4 TM uses eight-bit analog-to-dlgltal (A/D) converters for each
band. The MSS only uses a six-bit A/D converter. Are the extra two bits of the

TM effectively used? One way to try to answer this question is to calculate the

i_=': _'_.OUX F_u_ Q_ '
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:" antropy of tim signal,
:,

, , Entropy in a maasura of the amount of information (in bits) in an arbitrary
signal whert_ tha ith coda word has a probabillty p(i) (Rnf, 5), With olght-bit

- TM data, thorn arc 255 possible Intanulty counts for each plxa], for noah band,
i From th_ histogram of a saena, ann can calaulat_ the probability that any aount

will ba sent (in that ac_ne), The entropy ]!is the expected v0]ua of the bona 2
iogar ;hm of th_ probabilities of the counts'

,: t

l! = - _. p(i)lo82p(t ) (1)

,t ] t!

• Th_ (u_tropy yields the lower bound on the average number of bits required to
encode each pixel in that scone if an Ideal coding scheme were found and used,

": Table I shows the entropy (per plxel) of the Chesapeake Bay scene imaged on
" November 2, 1982. To avoid invalid or extraneous pixels, a sub-image from TM
:. , column i000 to TM column 5600 was used Also, non-geometrically corrected data i

were used; geometric correction increases the entropy by creating new intensity
"i values. The entropies have been calculated per detQctor for both the HSS and i

::ci the TM. Tlm table shows the average entropy for a11 the detectors in the band.
!

....I Chesapeake Bay November 2, 1982 Scene (E-40109-15140) i]
(L"I J

i i_

'_: TM* TH spectrum 2 MSS l MSS spectrum _

-_i Band 1 4.21 0.45-0.52 " " i:

: ! Band 2 3.78 0.52-0.60 - -
_, ; Band 3 4.55 0.63-0.69 - - I

?! Band 4 5.19 0.76-0 90 2.91 0.5-0.6

Band 5 5.92 1.55-1.75 3.57 0.6-0.7
_' Band 6 3.53 10.4-12 5 4.29 0.7-0 8

Band 7 5.11 2.08-2.35 3.63 0 8-1.1

_;. (*average bits per pixel)

._. (2wavelen&th in mlcro-meters)

; An interesting aspect of Table 1 is the comparison between the MSS and the TH

entropies in corresponding spectral regions (i.e., TM 2 vs. MSS 4, TM 3 vs. MSS
.', 5, and TM 4 vs. MSS 7). Since the instruments were imaging the same area at the

'" same time, any difference in entropy should only be due to the slightly
" dlfferent spectral regions (minor) or the finer quantizatlon levels of the TM

A/D converter.

TM bands 2 and 3 appear to have about one bit more entropy than their
: corresponding MSS bands, and TH band 4 appears to have about one and a half bits

more entropy. Therefore, it appears that the addltlonal two bits of the TM

" converter provide not only an improved quantlzatlon within the existing HSS
._ range, but also increase the range as well In other words, it appears that of

.I

Li
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a. the two n_w TM bits, roughly onn bit is a new high ordnr bit while thn other bit
is a new law order bit,

_" 2,2 Sen_or Data Analysi=

Histograms - Thn histograms of each do,actor in the Chosapnnko storm are shown
in Figures I-7, In most bands, the rad_nco/t_mp_rature com)ts are clustnred In
a narrow Jntnnslt_l region of th(_ 0=255 count range, This is connJril;ont,w_th the

rnsu]ts of the entropy cnlculatJ, ons. It is also c_xp(_ctod duo to _ho low nun

:] ¢_lava_ion anglo and characteristics of that scone,
b

t Figures i-7 are histograms from the "A-tape" data (radiometrically callbrat.od

histograms (for example see Figure I), These are a normal and an expected

result of the radiometrlc calibration processing, We call thes. gaps "empty
buckets" and we will discuss them further,

i! The histograms show that the detectors are well calibratc_d with the exception of

TM band 6 (Figure 6). The four detectors show significant differences at the

histograms peaks, (Note that the detector outputs are replicated four times

resulting in sixteen histograms), This is most likely caused-by an improper

" radlometrlc calibration gain, In fact, NASA discovered after this image was

processed that the gain factors for band 6 were being applied to the detectors

in the wrong order.

_il;I We also calculated the histograms for the "B-tape" data--the data that was not
-, t

yet radlometrlca_ly calibrated, They are very similar to the A-tape histograms

::_;: (if you remove the gaps, they would be identical)
_ .,%

,,_ A/D Converter Non-Linearity - Table 2 illustrates the distribution of pixel

;": s A/D converter.,._.._ intensities as a function of the low order two bits of each band'
_.'. ,

:C_ (from the B-tape histograms). NASA has reported that the spacecraft's A/D

-_ converters are not strictly linear in these bit positions, Table 2 supports

'_ this conclusion for this data set Pixel counts ending in Ol or I0 binary occur

....:. more frequently than pixel counts ending in 00 or ii binary. Statistically, ,

:"" there should be an equal frequency of occurance of each low order bit position.

, However, Table 2 has some scene dependency in it: for bands that have a sharp

:_. peak at the same count in most detectors, Table 2 could be reflecting that peak

rather than an A/D non-linearity.

%

,2"
.

, IV-27

"i ..

O00OONN I -T.Q P. "1"_



,r

Y

; Table 2 - Distribution of Samples a. a Function of Low Order Two Bits
7 Chesapeake November 2, 1982 Banns (E-60109-151_'0

r Low order bit_: 00 01 lO 11

" Band I 17% 31% 29% 22%

: Band 2 18% 29% 29% 24%
' Band _5 18% 34% 23% 2a%
• " Band 4 18% 32% 32% 1B%
'_ Band 5 21% 25% 3a% 202

: :' Band 7 2a% 29% 26% 21%

: ,: 2,3 Sensor Band-to-Band Registra¢lon

i "
i.j "°

: _ The TM has a primary and a secondary focal plane, Also, multiple detectors are
i ..... used to image the earth in parallel scans. Thus the potential exists for
i band-to-band misregistration of the individual detectors and bands. The
k ,_ relative registration of the TM sensors was performed in two different ways: 1)

visual assessment using digitally enlarged data, and 2) cross- :orrelatlng the
• bands.

i j

"_ Visual assessment - Data that included features characterized by points or edges
:° were selected and used in this study. Band I was arbitrarily used as the
_. reference band. The sub-lmages were enlarged by a factor of 8 times using a

:: cubic convolution resampling algorithm and the relative positions of various
.¢ features measured manually using a high resolution interactive display. Figure
'!, 8 shows the features that were selected for this analysis. The cursor was
_' programmed to read out its position to i/I00 of a pixel in this stepp allowingt_

i_i-- the feature to be located to about that precision. Table 3 on the following page

provides the results of this analysis, Bands I-4 appear to be in registration
_,, to within 0.1 pixels, while bands 5 and 7 exhibit about 0.7 pixel

_:. mis_egistratlon in the along-scan directlon and about 0.3 plxel misregistration
! _:,: in the cross-scan direction. The _ thermal band appears to have a 1.5 pixel

_,,i: misregistration in the along-scan direction and 1.9 pixel misregistration in thecross-scan direction.

i

: In order to independently assess the band-to-band registration, additional

i-_ experiments were conducted using a cross-correlation algorithm.i

[ :' Cross-correlatlon - Sub-images from six of the seven TH bands were

i......_ cross-correlated using a computer algorithm. The thermal band, band 6, was not

_i":7 used. The algorithm was a simple "template matching" approach to find the best

registration point (Refs. 6, 7). The algorithm worked as follows:
|-

i ,o

i' 1. We extracted a 70x70 sub-lmage centered at each registration point (i.e.,

! at the Washington Honumentj the Jefferson Memorial, etc.)

i _ 2. The pixel intensities in the bands to be registered (i.e., bands 2-7,
' called the "test data") were then intensity normalized, that is, adjusted

:" with a galn/bias so that their means and standard deviations were identical
_ ':- to the reference band (band 1)

! ........ _== = _-_ ........................................................._................................._ _'/_: : ....................................................................
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. Table 3 - TM Band-to-Band Visual Registration Analysis Results
Ch_sap_+ak_ Sc_n_, ID: E_40109_15140, November 2, 1982

Features Misregistratton of TM Band
1 2 3 4 5 6 7

:: Visible and IR Features

: Lincoln Memorial Pixn]+ 0 0,0 0.0 0.0 0.38 0.50

Linn 0 0.10 0.10 0,25 0,50 - 0.38

_ Jefferson Memorial Pixel 0 0.0 0,I0 0.25 0.75 0.75
; Llno 0 -0.I0 -0.I0 0.I0 0.I0 - 0.I0

- Washington Monument Pixel 0 -0.I0 0.i0 -0.i0 1.0 - 0.75
_ Line _ 0 -0,I0 0.0 0,0 0,25 - 0.i0

_ White House Pfxel 0 O,0 O.0 O.0 - - O.75

'" Lille 0 O.0 O.0 O.0 - - O.63 _

_". Thermal IR Features

! :"' Wa,Jh. Channel Pixel 0 I.13

i::_ Line 0 -I 75

=_. Park Area Pixel 0 1.5

_i Line 0 -2.13

: Tidal Basin Pixel 0 i.88
x:; Line 0 -I.88

• F

.,. Average Error 1 2 3 4 5 6 7

.

_" Pixel 0 0.03 0.07 0.03 0.71 1.50 0.69

)Y! Line 0 0.03 0.0 0.I0 0.29 1.92 0.32

Note: R_sults relativs to band 1 features (address of band i-band 1)

C

$
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3. Then, for the test data only, wv selected a centered 48x48 sub-image from i
the larger intensity normalized 70x70 sub-lmoge.

a 4. For each possibl, rc_gistration of a 48x48 test data sub-lmage within the
70x70 reference datll sub-lmage (529 r_glstratl.ons total) we calculated a

score based on the glumof the absolute values of th_ plxol intensity count
dlffernnc_s between the normalized t.st data and the reference band. A

ml.nlm.m sum roprosonts maximum similarity.

- 5. The roglstratlon result with the lowest score (sum) was chosen as the beat

) registration coordl notes.

11

The results of the cross-correlation by the above algorithm are shown on Table 4

and agree well with the visual analysis results.

.T

:_ Table 4 - TM Band-to-Band Cross-Correlation Results

_!,., Chesapeake Scene, ID: E-40109-15140, November 2, 1982 '_i

; Features Misregistration of TM Band :'
..: 1 2 3 4 5 6 7

i_" .:

_:_.: Visible and IR Features

, Lincoln Memorial Pixel 0 0.I0 0.25 0.25 0.62 - 0.62

" Line 0 0.00 0.00 0.10 0.38 - 0 25

E. Jefferson Memorial Pixel 0 0.I0 0.I0 NA 0.88 - 0.88

!_, Line 0 0. I0 0.I0 NA 0.38 - 0.25

... Washington Monument Pixel 0 0.00 0. i0 NA 0. I0 - -0.62
Line 0 0.25 0.00 NA 0.38 - 1.00 '

i; White House Pixel 0 0.25 0.I0 NA 1.00 - 0.88

. Line 0 0.00 0.i0 NA 0.62 - 0.25

Average Error 1 2 3 4 5 6 7
<

;" Pixel 0 0.I0 0.16 0.25 0.66 - 0.44

Line 0 0.09 0.05 0.10 0.44 - 0.44

2.4 Temporal Registration

i :i

" Scene-to-scene registration is important for both image correction and

" i information extraction operations. Limited experiments were conducted to
, assess the degree that TM data acquired at different times could be
t

, I
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cross-correlntnd. As two or more images with the same path and row numbers Were
not available at this date, we used the overlapped areas of the Modesto

...._ (December 8, 1982) scene and the San Francisco (December 31, 1982) scene not
obscured by cloud cover. Unfortunately, the Central Valley of Californla was

_ .:" covered by fog at 9:30 AM on December 31 and much potentlal overlap was lost.

: However, the town of Morgan Hill, California (a small town on US route 101 about
:_ 20 miles southeast of San Jose) was excellently imaged in both scenes

! o Furthermore, there are four small reservoirs that form a rough box around the

: town and whose dams make excellent registration points. The reservoirs are

i :i_ Anderson Lake, Coyote Lake, Uvas Reservoir, and Chesbro Reservoir and are shown

i' .: on Figure 9.

: Using a high resolution color display and digital enlargement, we located the

i! northernmost point of each dam in each scene. We then performed a digital

_ cross*correlatlon using an automatic algorithm. We used the same simple
_: template matching al_orithm described in the previous section. The results,

_'' shown in Table 5, demonstrate a 100% success rate: the automatic registration

:_:- did not differ by more than a plxel from the manual registration. We ran the
• automatic registration for every reflective band; the best registration point

ii_,:. found for each band never differed by more than a pixel from the other bands t
_ _ points or from the manually determiued point. In fact, because of the high
:!o_'i band-to-band agreement, we consider the automatic registration to be more

_:_ accurate than the manual registration for this experiment. The excel]ent
_-_:7 success rate can be attributed, in part, to close acquisition dates (23-day

v_i._: separation) between the San Francisco and Modesto scenes Further work iai_i_

_-o:IS, planned in this area as multiple data sets for the same ground area with greater

!-_i_! temporal separation become available.

-_? Table 5 - Results of Temporal Registration Experiment
_. Hodesto Scene E-40145-18082 to San Francisco Scene E-40168-18143
_.-

i_:: ; Sub- image Registration Resu Its
_, Visual Cross-Correlation
:_ Anderson Lake -I,-1 -__,0

- Coyote Lake -5 ,+6 -5,+6

Uvas Reservoir -9, -3 -9, -2
,-_ Chesbro Reservoir -5, -3 -6, -3

i-i:_ ( x,y plxels from nominal )

i _-, 2.5 Failed Detectors

The TH contains a total of 100 detectors (16 for each of the six visual and
_-_" infrared bands, and 4 for the thermal band). Two of the detectors either
-.:" failed, or were considered to have been performing inadequately and their output

' was not used by the NASA ground data processing system, The result of not having

:_ " a detector output is essentially a null value along scan line and produces s
_." pathological histogram response The failed detector 3 of band 5 is quite

• evident in the band 5 histogram shown on Figure i0. In this case the detector is

_._!_...., IV-31
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outputtlng an intensity count of 0 for all radiance input values. It was

presumed that detector 4 of band 2 had also failed; however, it appears to

provide a normal histogram as shown on Figure 11. The current ground processing

approach is to use the output from the preceding detector, that is, to repeat

the llne directly above the failed detector. Improved techniques to compensate
for failed detectors are discussed in Section 4.2

2.6 Sensor Resolution

The resolution of the TM and MSS data was assessed by visual and edge analysis t!

methods. There was concurrent data acquired from these sensors and a sub-lmage ,!

over Dulles airport was used to determine the smallest linear feature that could

be discerned and to conduct absolute and relative edge analyses.

Visual Analysis - Figure 12 shows a Dulles airport sub-image from the Chesapeake
scene. This figure also shows a map of the airport and a high altitude aircraft

photo in addition to the MSS ana TM data. It should be noted that these data ii

sets were all geometrically corrected and enlarge to be a ccnformable data set i:

using an interactive geometric correction program ,{el. 10). The runways of

this airport are 150 feet (45.7m) wide, and the parallel taxi strips are 75 feet

wide. They can be easily seen on both the TM and the MSS data. Cross-sectlons

of a corresponding !olnt of the runway of the enlarged and registered images are

shown on Figure 13; it is apparent from the images and the cross-sections that

the TM data has significantly improved resolution and feature dlscernabillty

relative to the MSS data. The TM cross-sectlon data exhibits a sharper slope

and narrower width, as would be expected from the smaller TM aperture. In the TM

sublmage of Dulles airport, linear features as small as about 25 feet (about 1/4

pixel) can be easily discerned.

Edge Analysis - Multiple edge analyses were conducted on TM linear features and

plotted. A cross-section region of the Dulles airport runway were selected and

ten contiguous lines of data were plotted. This was done in order to obtain a

range of sample lines over the runway edges. Figure 14 show the edge traces that _.

were produced from TM band 1 and Figure 15 the edge traces produced from TM band

2. These traces show a rapid transition from the radiance value of the grassy

area into the concrete area. The runway is 45.7m wide and the radJ:!nce counts

show a rapid transition from the grassy area into the concrete region (within

two pixels). In a few cases, this transition occurs within a pixel. This is

consistent with the expected transient response, taking into consideration the

finite aperture size (30m) and the filtering effects of the atmosphere,

aperture, presampllng filter and the digitizing process. Further analysis will

be conducted to determine precisely the transfer function and spatial frequency
response of the TM sensor.

2.7 Sensor Noise

Figure 16 shows a section of the Pacific Ocean from the Dece;aber 31, 1982 San

Francisc_ scene. It is a monochrome representation of the TM band 1 data

portrayed with a high contrast stretch. It was chosen as it visually exhibits
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: every noise defect that we have found in any image. The near uniform radiance
value of the ocean does not "mask" out the noise.

:' In the vertlcal dimension, two sources of noise are apparent: 1) there are
:: alternating light and dark regions ("bands") varying from 60 to 180 detector

;_ lines in length, and 2) there are alternating light and dark detector lines

("stripes"). The second effect can be easily explained by inaccuracies in

= detector cnlibration processing, and will be covered in more detail in the next
(: section when we discuss ground processing.

The "banding" effect is more difficult to explain. There is no known noise

-J source that can account for it. It is possible that the detector offset voltage ,_
becomes unstable in certain images; this will be studied further at a later
time.

:-. In the horizontal dimension there are also two sources of noise: I) a waveform :

=- with a spatial period of about 17 pixels that can be seen as a "ripple" effect in

Figure 16, and 2) a waveform with a spatial period of 3 pixels. The 3 pixel i
_ frequency is most easily visualized in Figure 17, which shows the result of i;
_: subtracting each pixel count from its left neighbor's count. If the noise were !_
•:_ perfectly formed and perfectly in phase from line to line, one would see

Z= _"i [

i-i:!;! continuous vertical stripes in Figure 17. Of course, the noise is nct that well

i_:_ behaved, but one can see a definate "vertical texture" in the figure. This 3
[._! pixel noise typically shows up as a repeating "+I -i 0" pattern over the

)_:_ background average intensity count.
)_'.!

i__! Figure 18 shows the energy at each spatial frequency in the top line of the

i_:" Figure 16 image. There are peaks that correspond to both of the noise spatial
i_ frequencies actually observed. The 3 plxel peak (at 325 cycles per 1024 pixels)

_ is the larger; the 17 pixel peak (at 59 cycles per 1024 pixels) is still very

_! noticable. These peaks indicate that the actual spatial periods of the 3 pixel
and 17 pixel noise sources are 3.15 and 17.35 pixels respectively in this image.

A waveform with a 3 pixel spatial period has a time frequency of about 32 kHz.

This corresponds to the chop frequency of a switching power supply on board the

:: space craft, so it is reasonable to assume that the 3 pixel noise is due to this
electrical noise source adding to the signal. Later in this paper, we will
present a computatlonally efficient algorithm to reduce this noise effect.

_,' The source of the longer period pixel noise (17.35) is unexplained at this time.

L

3.0 LANDSAT-4 GROUND DATA PROCESSING

, As the TH is a new sensor, with different principles of operation and improved
data characteristics, this investigation explored the data from the point of

view of adequacy of the ground processing and improvements that could be made to

compensate for sensor problems and deficiencies. This included investigating

the radlometrlc correction processing, compensation for a failed detector, and
•.: geometric correction processing.
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:, 3,1 Radiometric Correction Processing

.',: The sixteen detectors in a band respond fairly uniformly to tenttcal inputs,

:_ varying by no more than 1 part in 30 between them. However, ._.ehuman eye is
"[i very sensitive to linear features and this variation can cau2e objectionable
•;_._ "striping" over uniform radiance features, such as bodies of water. To

[! compensate for this variation, NASA ground processing transforms each
_: detector's output by separate gain/bias factors derived either from the

_;.:_. spacecraft calibration data or from averages of readings over the ground:

.... lo(i,j ) = gl(i,j) + b (2)

,_ where g is the gain factor and b is the bias.

_'_i The B-tape data is transformed to A-tape data by multiplying the B-tape plxel
_! value by the appropriate gain, adding the appropriate bias, then rounding the

i!I result to the nearest integer number. The process is illustrated in Figure 19,

using actual calibration values for one detector from the Chesapeake scene.
This figure also illustrates a side effect of the process: the "empty bucket"

effect. The output value 64 is an "empty bucket"; the input count 63, when

transformed, was rounded to 63, and the input 64, when transformed, was rounded

i!iI .... to 65. Nothing was mapped to output 64, so it is empty. Similar empty buckets

can be seen for almost every detector in the A-tape histograms.

_ Incidentally, the multiplying/rounding process is only calculated once for each

possible input value 0-255. The correct output is placed in a table (one table
for each detector), and the B-tape to A-tape conversion of the millions of input

pixels then becomes a simple matter of using the input to fetch the correct
... output from the table. For this reason this processing technique is often

-_ili called the "table lookup" approach.

_i NASA's radiometric processing does not completely remove the stripes (measured_- subjectively by that unsurpassed stripe detector, the human eye). We wondered
whether the observed stripes might be solely due to an empty bucket effect, not

:: to any error in the calibration factors. We looked at an area of the Potomac
- River in the Chesapeake scene that showed striping in band 1 (see Figure 25).

_: The counts were in the range 63-65. In band 1, one detector had an empty bucket
_.i at 64 and another detector had an empty bucket at 65. If we take the detector

with the empty bucket at 64 as an example, NASA's ground processing prevented it

from indicating that the radiance count was 64. Judging from the rest of the
detectors in this area, this must have frequently been the true scene radiance.

:_ Later in this paper, we will present a statistical algorithm that
radlometrically corrects the data but does not leave empty buckets.

[_: 3.2 Failed Detector Data Compensation

When a detector has failed, NASA ground processing replaces the failed detector
scan llne with the scan line of the detector immediately above it prior to

geometrically correcting the data. This scheme can cause very observable
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='_. distortions in the final image products, especially images of high contrast
,,# cultural features. Figure 20 shows an aerial view of RFK Stadium in Washington,

D.C. Figure 23a shows a greatly expanded TM image of the same stadium acquired
_ii! on November 2, 1982. The stadium shows up as a bright donut-shaped object with adiameter of about 8 picture elements, In this true color image using bands I, 2,

and 3, the southern stands show up as a bright magenta feature with green

] fringing. This is a data defect due to the failed detector in band 2; in
reality, the southern stands are identlcal to the northern stands. Figure 21

shows band 2 in a three dimensional presentation where the height corresponds to
pixel brightness. One can clearly see that the repeated llne due to the failed

detector is in llne with the southern stands. Therefore the stadium appears to

be horseshoe-shaped rather than donut-shaped in band 2.

The Dulles Airport TM sub-lmages (Figure 12) show the same kind of defects in

band 2 that were observable in the RFK sub-lmage. For example, in the true color
(3-2-1) image, there are periodic magenta colored gaps in the taxiway of the

east/west runway where the failed detector tracks over it. Throughout the

image, the failed detector can be spotted as smears of magenta or green color.
Any linear feature that lies at a significant angle to the spacecraft's llne of

flight shows the failed detector problem clearly.

Later in this paper, we will present some new algorithms that work better for

computationally replacing a failed detector.

3,3 Geometric Correction

A preliminary investigation was performed to assess the geometry of a TH image.
Both TM and HSS data were acquired over Washington, D.C. on November 2, 1982.
Both scenes were processed to be in the Space Oblique Mercator (SOH) projection

(Ref. 8). In the absence of S0H projection maps, we decided to use the HSS image
as a SOH reference and to evaluate the geometry of the TM data relative to that

reference, as the HSS data processed by NASA, NOAA and D01 was assumed to have
had more geometric checks made on it.

_ : Background - An image may have geometric errors from a number of sources:
• sensor-related errors,

: • platform attitude and altitude deviations from nomlnal,1

1 • scene or cartographic related errors.

, Transformations of varying complexity may be required depending on the geometric
:.i corrections needed. For example:

• zero-order transformations provide a translation correction,

• first-order transformations provide a coordinate axes rotation or scaling,i
and
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• second or higher order transformations correct for non-linear errors or

implement cartographic projection transformations.

Image registration - This technique is used to register different images taken
of the same scene or images taken at different times with the same or differing

sensors. The registration can be performed automatically or can involve manual
mensuration of ground control points. Registering two images requires

correlating a number of points in both images. There must be a sufficient
number of points to accommodate an accurate mathematical model of the relative

geometzlc distortions existing between the images.

Image mapping - Image mapping transforms or converts the image from one
geometric space to another. This can be done with a two-dlmensional or a three
dimensional transformation. In the former, the information relating the scene

projection onto a plane is used, neglecting vertical relief data (mountains,

etc.). Three dimensional transformations are the more precise as they provide

_ vertical relief displacement corrections. ,i
!i
i:

: Approach used - The MSS image data and the TM image data have differing pixel
__ s_zes. The MSS data is processed by NASA so that the plxels correspond to 57

:aeters square on the ground, and the TM data is processed so that the pixels ,4

correspond to 28.5 meters ._;quare. We processed both MSS and TM images so that :!
the new pixel sizes of each sensor were 25.4 meters square (chosen because it )
allows a precise 1:250,000 scale factor on our 4 mll plotting device). This

processing only influenced a single linear term in each of the mapping 'i
equations, and did not change the image geometry other than pixel size (Ref.

i0). Corresponding features were accurately located in each digital image using
;'J

an interactive high resolution display (IBM 7350). A relative geometry table _I
was generated and is shown on Table 6. It relates the x (along scan) and y

(across scan) coordinates of the same point in both the MSS and TM space. Table

6 summarizes the average displacements in six regions of the image and
approximately where those regions were located. The averages were made up of

about five ground control points for each region. Table 7 on the following page
shows the actual ground control points and their locations.

I

i

t

I

F
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... Table 6 - Average Displacements of MSS to TM Points
Chesapeake Bay November 2, 1982 Scene (E-40109-15140)

..:. (+2.I,+0.5) (+2.0,-0.4) (+2.I,-0.3)

b'. ,

:"'; (+2.0,-0.6)

;,-,..

(+2.1,-0.8) (+2.1,-0.7)

::'- - all measurements in (X,y) kilometers - t

? ,

1::_: Results of TH and MSS Registration - These two images acquired from the same
-. ;._ spacecraft at the same time, processed (by NASA) to be in the same map

.....-. projection (SOH), and processed (by us) to be at the same scale, should in

_i:-_!'_:i ""conformance throughout the image except for a uniform displacement introduced
,_ because we did not register the images before scaling them. Table 6 shows the

:-':[-' effect of this displacement, but it also shows that there are other higher order
"2_--,

,.,.._ distortions. These distortions are greater in the y dimension (totalling 1.3

:_':'._.,., kilometers). The upper left hand portion of the image shows the greatest

_ .... relative distortion.

:_!.: It is surprising that the y dimension shows the greater error. The x dimension
":i;::: is scanned by the mirror systems, which are different in the two instruments;

_:;? the y dimension is scanned by the motion of the satellite itself, which, of

::" course, is common to the instruments. The following two dimensional mappingT,
functions are the best first order fit for the 33 registration points shown in

- * Table 7:

:.- X = -2.00 + 0.9995x + 0.0005y (3)

Y = -0.Ii + 0.0023x + 1.0056y (4)
_.

[j They indicate a slight rotation combined with a scale expansion of about 0.5% in

" .', the y dimension. Unfortunately, they fail by as much half a kilometer in

•'." predicting the y displacements.

_:. The following equations are the best second order fit for the 33 registration

• ' points in Table 7:

X = -2.10 + 1.0039x - 0.000028x 2 + 0.000002xy - 0.0009y + O.000004y 2 (5)

• Y = -0,81 + 0.0215x - - 0.000065xy + 1.0066y + 0.000042y 2 (6)0.000093x 2
,--.

_, These equations produce registered images accurate to within 120 meters in both
":': X and y. This result indicates that either the HSS or the TH have both scale and

.: non- linear distortlons remaining.

1
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_"" Table 7 - Rela_;ive Registration Between MSS and TM Data
"_ Chesapeak_ Bay Nov_mb,.r 2, 1982 Sc_n_ (E-40109-15140)

Name MSS TM Delta

°! x y x y x y
:- REGION A

h! River bend ]4.17 9,86 ]2,14 9,40 2,03 .46

_i;" Pointed field 18.85 7.87 16.76 7.37 2.08 .51
_:: Field corner 17.78 16 64 15 70 16 18 2 08 46.,. . . . . .

" Valley 7.11 15.24 5.03 14.78 2.08 .46
,( REGION B

: Donut 71.09 67.54 69.09 68.12 2.01 -.58
_ White dot 72.24 69 32 70.23 69.90 2 01 -.58

"° .

L::_ Platfozm 88.14 62.53 86.16 63.07 1.98 -.53
Moon 89.36 66.04 87.35 66.60 2.01 -.56

o; Torpedo 90.27 69.14 88.24 69.72 2.03 -.58
_:. REGION C

_o:_ Finger 145.72 130.45 143.61 131.11 2.II -.66

--_i._" Stirrup 140.18 122.53 138.05 123.19 2.13 -.66
: ; Channel 142.09 121.11 139.95 121.77 2.13 -.66

_Y Thumb 148.18 124.33 146.05 125.02 2.13 -. 69
u.,

._- River/lake 135.71 114.63 133.55 115.32 2.16 -.69

L_:v - REGION D

i ,:_i:_ Dog 76.30 20.96 74.35 21.39 1.96 -.43
' _." Siamese 81.10 14.66 79 15 15.04 1.96 - 38
t:_!; " '
w ._'-:.-'. River 90.63 7.42 88.63 7.80 1.98 -.38
i ::_: Black hole 86 94 23.14 84.96 23.60 1.98 - 46

Eastern hole 89.36 22.43 87.43 22.83 1.93 -.41

L ';' • •_</;,_ Lake 77.42 5.79 75.44 6 17 1 98 -.38
' _ REGION E

i "_, Ruin 138.96 5.87 136.83 6.15 2.13 -.28

i-_-_." Nose 144.02 4.06 141.88 4.34 2.13 -.28

r Appendix 148.95 16.21 146.89 16.48 2.06 -.28
, :':, River intersect. 134.59 21.03 132.56 21.39 2.03 -.36

:;'" Hook 138.96 19.48 136.73 19.91 2.24 -.43

i:_;. Triangle 150.65 5.87 148.49 6.17 2.16 -.30

" ' White square 137.62 14.27 135.46 14.63 2 16 - 36
r

.:, REGION F
Gold tooth 6.17 121.97 4.06 122.76 2.11 -.79

= ",. Radio 8.59 118.36 6.53 119.15 2.06 -.79

,.,: Road intersec_. 13.39 121.39 11.30 122.12 2.08 -.74

_::_.',: Barn 17.98 112.70 15.88 113.39 2.11 -.69
•- Lake point 26.82 119.81 24,74 120.65 2.08 -.84

_:, Snake eyes 20.55 122.81 18.44 123.57 2.11 -.76

T.

,','7 • Note: names are mnemonics for the appearance of a feature, and do not
L- "

,:, correspond to actual place names.

i

:

u

" ',
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4.0 EXPERIMENTAL ALGORITHMS AND RESULTS 'j,

,'!

' This section describes algorithms developed to improve radtometrtc processing,
to r(;duce striping, to c.ompennate for failed detectors, and to reduce the noise
of the TM n_nnor data,

4.1 Radiometric Correction�Striping Removal

As has been described previously, NASA's radiometric correction processing
loaves "empty buckets" in the output data. Also, there is reason to believe

that these empty buckets contribute to the striping observed in some imagos. ,

We decided to process the Potomac River sub-scene from the November 2, 1982

Chesapeake image and eliminate this source of striping. An alternative to

NASA's lookup table approach is diagrammed in Figure 22. It can be described as

a probabilistic approach. If a detector's calibrated output of an input 64

count is 64.504, for example, we randomly place 50.4_ of the input 64's into the !

:_ 65 output bucket and 49.6% of the input 64's into the 64 output bucket. ;i

% ! There is a concern that the probabilistlc approach "destroys" the original input !:
data. This is true in the sense that it is no longer possible to determine "

• uniquely what the B-tape data value must have been from the calibrated A-tape ;
:: data. However, it is not true that the existing lookup approach yields a

"better" estimate of the actual ground radiance. An input 64 on the B-tape

could actually correspond to any radiance between 63.5 and 64.5. Therefore the

true output could be anywhere (in this detector's example) between 64.000 and

: 65.008 and only on the average would it be 64.504. What is the best guess for i

the output count? Unfortunately, there are two good answers: _I

I. Guessing it always to be 65 is "best", in the sense that it minimizes the I_,[

average error (although most of the time the guess will be higher than the i

actual radiance). This is what NASA's standard processing would do.

2. Guessing it sometimes to be 64 and sometimes to be 65 is "best", in the

sense that the accumu]ated bias of the error will be zero (although the

average magnitude of the error will be greater). This is what our
alternative would do. t

We applied the probabilistic estimating approach to the Potomac sub-scene. The i

striping was noticeably reduced (see Figure 25c) but not altogether eliminated. !
We conclude that: i

i

• Empty buckets can cause striping in an image even when the calibration is

otherwise perfect.

• The calibration factors used by NASA in the Chesapeake scene were not
perfect.

Incidentally, in using the probabillstlc approach to adjusting pixel

itenslties, it is not necessary to calculate a new random number for each plxel

operation. It is adequate to keep a table of random numbers and simply cycle
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• through them. A table of about 1.000numbers is enough, In addition to saving

computation, thin modification to the algorithm allows the input data to be
:: reconstructed from tht_output (asm_min K the random number table is published),

In fact, just as wJ.th the current NASA scheme, no mu].tip!_cations need be
carried out for each pixal--on]y fixed point additions, This is done as
follows:

: I. BuJld a table for each detector for each of the 256 input poss_hllitles

where the output is represented as a 16 (sol 81) hit quantity at the form

"* XX.XX (base 16).

2. Store the random numbers in the form 0.XXI6. (The random numbers should be

evenly distributed in the range 0.0016 to 0.FFI6.)

_ 3. To find an output value, add the indicated output in the table with the next

random number then truncate the decimal part of the result (i.e., the low 4
_ order 8 bits).

!7 :
. 4.2 Failed Detector Data Compensation

We have seen from the previous sectlcn how the current NASA failed detector
i:_ replacement scheme can cause image defects. It has been suggested tha_ the

!_ ground processing, instead of merely replacing the failed detector with the llne

;.: above, should linearly interpolate between the line above and the llne below to

i/ calculate the failed detector flee. This does not solve the problem; RFK
stadium still ends up looking like a horseshoe instead of a donut. Even

•= interpolation with higher order curves, such as quadratic fit, are of no help.
:_-. Figure 23b demonstrates this. In fact, it is difficult to imagine any algorithm

" that could correctly deduce the donut shape from the existing band 2 data--after

all, many stadiums actually have a horseshoe not a donut shape.

We have been experimenting with the idea of replacing the failed detector scan

'" line under the control of the same scan l_ne in a "template" band--a nearby band

with no failed detectors that is fairly well correlated with the failed

detector's band. The results are very encouraging. We use band 1 as a template

with which to generate new intensity values for the failed detector in band 2.

_°_ The following three algorithms are different methods for doing this:

Algorithm 1 - Template Replacement

This is the simplest template algorithm that we have devised. In this algorithm
we directly substituted detector 4 of band 1 for detector 4 of band 2, after

scaling its output intensity so that its range was slmillar to the other
detectors in band 2. The band 1 to band 2 conversion is of the form:

I2(i, j) = aIl(i,J) + b (7)

::: where In(i,J ) is the pixel value in band n (n = I to 7) at line i, column J, and

F '!,.,,. IV-40
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where the gain, a, and the bias, b, are calculated from the statistics of th. two
hands :

j.

! a=a 2 + a I b_-_ 2- a_ 1 (8)

::, whnro _ and o arn tho moan and standard dnv.t.atton of band n rnspncttw.ly.
_; n n

(": Algorithm 2 - Template Replacement with Error Adjuatment

In this algorithm, band I data is substltuted for band 2 data as in algorithm I,

. with an error count value added to each pixel. The error value is a measure of
:, how dlffezent baztdI and band 2 are in the neighborhood of a failed plxel,

" Specifically, the error slgnal E is the average of the dlt'ferencebetween
.. normalized band 1 signal and the actual band 2 signal at the plxel above and the
':' plxel below the failed detector plxel. That is:
I/.

_,', _(i,j) = [I2(i-l,j) - (aIl(i-l,J)+b) + I2(i+l,j) - (aIl(t+l,J)+b) 1 + 2 (9)

i,

; where a and b are calculated as in algorithm I. The final output pixel is:

....: 12(i,j) = all(i,j) +b + E(i,J) (10),{,

.[!:

_ "" Algorithm 3 - Quadratic Vertical Fit with Template Data!
i J The final algorithm fits a quadratic equation to a five pixel vertical (across

_i': scan) slice centered around each failed detector pfxel. The relative plxel

,j intensity values are considered to be a quadratic function of the line number,
" "i":

.,".

:;- I(i) = a0 + all + a2i2 (II)

- The coefficients of the quadratic are determined by a least squares fit to t]_e

:_ actual data in each vertical slice. The data value used for the failed (center)

'i pixel in the slice is the scaled template value from the nearby band calculated

"-' as in algorithm I.

"% Once the coefficients are determined, the missing pixel value is simply the
value of the quadratic at the i value of the missing detector llne. (In the five

_,- pixel centered vertical slice the i value of the missing plxel is always 3.)
i-"

Note that new coefficients must be calculated for each pixel that needs to be

_"_ replaced.

, ., We programmed these three algorithms in APL and ran them on the RFK and Dulles
: sub-lmages. The results were excellent. Figure 24 shows the algorithms applied
" to the RFK stadium sub-image. Both the RFK and Dulles sub-images can be
:" corrected so that the casual observer sees no defects in any circular or linear

,b,
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feature using any of these algorithms, If you wlsh ta repla_:f_a fail_d detector

with another detector's output and are concerned with malntaJning the shape of

.: geometric f_aturas, you are fa_'bntt,r off llf_ing_he n_|mndetector's olt_put from

:' a nearby [,and than a nearby dn£nctor'h output from the flameband,

A detailed nKaminatlon of t|lf_failed detector ].Ino[_dons show |lame(Infr:at[iwith

the template algorithms, fllthouMh in no canon are t:lmyan _gtr_mo i]t_the d-f,ctn
observable with the current fail,d dn_oc_or tlchom_. Thi_n_ dnf_r.tl_flr_ [r|two

" _Ionses :

/ 1 In flat;, low eon_vast rog_onn, 1;hn foiled d(_toct;or !i.o froq.o_lt ly qhow_ up
:_' as a s1:Ighl;ly off color st:rII._ wlr.h o].8or'll;hm I, A]8or'lt, hm 2 _xll,_l_t,r._ th:ls
r same p:oporty, but much |.otis fr_qu(mt]y m_d loa_ pronout:v_'(_d, W(_Imv_ never
' soon strlpos wlth algorithm 3,

, .!"

':" 2, In high contrast man-made features, algorithm 3 usually yields _ lower
contrast value than would be best for the scone, This can be observed as

._ slightly off-color Is,g, pals magenta or green) pixels near or on tits
.._ man-made feature. We bays never .ueen tlvJ, s problem with algorithms ]. or 2,

--:,: , When table lookup programming techniques are used, only algorithm 3 re, quires per
pixel multiplications and divisions (to perform the least squares fit). Even

•.. then, the computer calculations required are not more titan those that are

,, required for a gsometric resampllng, and, of course, need only be p_rformed for

':' the failed detector plxels, not for every plxel.
__--_:,,

':7 _'

,._: 4.3 Reduction of 32 KiloHertz Noise
:..,. o

_:_' There appears to be a high frequency coherent noise signal in the TH data. There

-::,;. are two ways to remove a coherent noise source of a known frequency:

"_ I. Transform the incoming signal to _he frequency domain and filter out the

_.. noise frequency, then transform the signal back to the spatial domain.

/,> 2. Process the signal in the spatial domain by subtracting a waveform of tLe
:, noise frequency directly from the incoming signal.

_" The first method can require a prohibitive amount of processing without special
Fourier transform hardware. The second method, although it requl_es n,_ch less

: processing, is very sensitive to the relative phases of the subtcactive noise
waveform and the actual noise in the data--if you are not. careful, you may end up

;: doubling the noi_e rather than zeroing it out So, determining the phase of the

:" noise in the data is a key factor in successfully reducing or rome',leg it by the
"-_ .second method. The problem is complicated because the noise period is riot
•. necessarily an integral number of plxels and the no_se may not be statlonaxy

(e.g., may drift sllghtly with time). Knowing the precise noise phase at a

certain point in the input signal is no guarantee that you will know it later on.
2"

:: I In this section we will present an algorithm for eliminating the 3 p]xel (32

!' ! kilohertz) noise from the imag_s that is based on the second method above. In
_--, this algorithm we arbitrarily partition the incoming signal line into adjacent

_',_':,i IV-42
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':'.: "cells" contalnin_ three pixels each. Within the c_lls, the plxels are called

: "A", "B", and "C". The algorithm then attempts to determine, for each cell,

. whether the noise signal is in synahronlzation with the A, B, or C pixel. To do

'- this, we "differentiate" the signal by subtracting each pJxel from its left-hand

neighbor. The no_sn signal now typically looks l.l.k_a "+2 -] -i" pattern, Tile

*_', ce].]s are now assigned £o onn of four states:

:w

::' 1, "A sync" - a positJ.ve transition was found Jn the h position only,

:' "2." "B sync" - a positive transition was found fn the B pos_t_on only.

: 3. "C sync" - a positive transition was found iB the C posit_.on only. t
,_.

;_: 4. "Undecided" - either no positive transition was detected in the cell or
more than one transition was detected.

;_ At this point with a typical input signal we probably have equal numbers of A, B, 4
::. and C sync cells. However, because the phase of the noise signal does not change ;_

rapidly, cells will tend to be in the same sync as their neighbors. Therefore

..: the cells will be grouped in regions of similiar sync, and between the regions

_i the cells will be predominantly undecided. Also, scattered throughout the llne
', will be cells whose sync has been incorrectly assigned: for example, an

..I isolated "B" in the middle of a group of "A"s.
]..,d. 11
3!

± .z Now we enter an iteratlve algorithm that attempts to grow the regions of sync by 'i

_:._. assigning the undecided cells to one of the three definite sync states. The I
;! decision flow for an undecided cell to become decided is shown on Figure 26, and

-_' depends on the state of its neighboring cells. If neither its left nor right

--: neighbor has decided on a sync, then a cell remains undecided If only one has

decided on a sync, then the cell decides to be in sync with it. If both have

:"_ decided on a sync, then the cell arbitrarily decides to be in sync with its left

_:" neighbor.

21
• Each time we apply the decision algorithm to the cells, more cells become

.... decided The regions of sync grow as they convince their undecided neighbors to
_.( be in sync with them. The decision algorithm can be applied iteratively until

" all undecided cells have become decided; h_,,ever, we recommend setting an upper

bound on the number of iterations at four. This is adequate for uniform

intensity regions (like the Pacific Ocean). Over structured land features the

., algorithm will neither be as accurate nor as important, so there is no need to
-'_ force it with extra iterations.

f.

: ' After we have grown the regions as much as we want, we can now go and re-label

• some of the cells that were obviously mislabeled in the first step, If a cell is

surrounded on both sides by neighbors that agree on a sync state, but the cell

itself is in a different sync state, we change the state of that cell to be in

agreement with its neighbors.

After synchronization is determined, the magnitude of the noise can be

' estimated. This ]s simply a matter of averaging the signal of all the pixels in

--..[ the first position, the second position, and the third position after the sync

." point (A, B, or C). These correlated averages are subtracted from the signal

"--:. average to determine the difference due to the noise, Then this difference is

• _ subtracted from the orlg_nal signal, using the synchronization points

] IV-43
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determined for each cell. If a cell is still undecided, no nolso correction is
done for that cell,

Figure 27 shows the results of this algorithm appl_ed to the Pacific Ocean

_'. sub-lmago of _ho S_n Francisco December 31, 1982 scene. The top half of the
image ha_ boon compensated, the lower half is the original data. Figure 28
shows the same repaired sub-lmage represented as plxel-to-plxel differences, a

representation which enhances the 32 kHz noise. It can clearly be seen that the

noise (the "vertical texture") is reduced in the upper half of the image.

Figures 37 and 38 show the same image with the noise reduced by the more

;: conventional approach of transforming the image with an FFT algorithm,

eliminating the noise frequency in the frequency domain, then transforming the
image back to the spatial domain. It can be seen that the algorithm presented

" above performs at least as well as the FFT approach, and takes significantly
' le_s processing (assuming the special FFThardware is not available).

4.4 Digital Enlargement of Sub-image Areas

Registration to a map - an experiment was conducted to enlarge and to register a
-- TH sub-lmage erea with a map. The objective was to ascertain the degree of

! _- enlargement that could be used before the data became unusable, and also to

" determine the the amount of distortion in the original data. This experiment

z y was accomplished by digitizing an available street map of the downtown

!:., Washington, DC region, and then registering a TM sub-image of the same area to

_" the map (Ref I0). In this experiment, the digitally enlarged TH image was
iLi_ expanded by a factor of about 7 times and rotated in order to match the geometry
._- of the map. Figure 32 shows the reference map that was used, Figure 33 the
,. source TM sub-lmage that contained the same area, and Figure 34 the

geometrically registered, rotated and enlarged TH image. Of interest is the

detail of the enlarged TM image. Clearly visible are the Capital, White House,

_ Space Museum, the Washington monument including its shadow, and the Lincoln
• memorial. This data was also overlayed on the map, and is shown on Figure 35. A

linear first order mapping function was used to enlarge and rotate the image
using cubic convolution re-sampling (Ref. ii). The mapping function is:

" X = 230 58 + 0.14565x + 0.02473y (12)

Y = 373.75 - 0.00240x + 0.14573y (13)

A second experiment wa_ done to register the dat_ to a 1:24,000 scale USGS map.

This was also successful, and showed regions on the map that needed updating

(for examples the Kennedy Center for the Performing Arts had been built after
the map was published).

It appears that the data is of good enough resolution and quality to be useful
for land use analysis and evaluation.

• ; Resampllng experiment - an experiment was conducted to evaluate the performance
of resampllng algorithms to support the TH enlargement. Figure 39a shows the

* ; Dulles airport band 1 sub-image, and Figures 39b, c, and d show a portion of the

sub-lmage enlarged, rotated, and resampled with nearest neighbor, cubic

.i IV-44
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convolution, and hilinear interpolation (Ref. II). Clearly, the nearest

neighbor resampling results in undesirable structured data due to the

: replication of data values. Surprislng]y, bilinear interpolation gave similar

i: results to the cubic convolution resampllng, It should be noted that the source

[ data was P-tape data--data previously cubic convolution resampled in the SOH
,_i correction process. The edge enhancement resulting form this process is

'" maintained in both the bilinear interpolation enlargement and the cubic
convolution enlargement, although additional edge enhancement can be seen on

r." inspection in the cubic convolution enlarged image.

' Generally, users should be able to enlarge P-tape data in many applications
:7

- using bilinear interpolation, with attendant savings in processing time.

_i_:;r However, higher order resampllng algorithms should be used for A-tape to P-tape
" data geometric correction.

5.0 INFORMATION EXTRACTION EXAMPLES

._;_, Several experiments were conducted to assess the utility of the TM data for
-:,'1_:, information extraction purposes. These experiments included using differing

/!_i band combinations for Red-Green-Blue color presentation, combining bands to
.:_)_'! display more than three bands at one time, and principal component

_L_i transformation of the original bands.

_:'!_i 5.1 Color/Band Selection for Color Composites

_._.;' A subimage from the Hodesto scene was selected for color presentation

i_ experiments. Shown on Figures 29 and 30 are the seven bands of the Modesto
T,_. subimage used for this experiment. This subimage provides a representative
_i_:. sample of geological, agricultural and urban land use categories. Various band

:,:_' combinations were used and recorded, and are shown on Figure 30. It is apparent
' that many possibilities are possible, as there are three bands from seven

__ possible bands that can be used It appears that bands 4 and 5 are important
- "c" bands, from the point of view of their contribution to the color and separation

_ of categories. Shown on Figure 31 are the map of that region and also a land use
_; map produced by the USGS. It is interesting that the TM images show far greater

detail than the map and provide current land use data•
• i

_,;' 5.2 Band Ratioing
/

Experiments were conducted to combine multiple bands into one color
.;.. presentation. This was done in order to display more informstion for ima8e

: viewing and analysis than woulc be possible in the usual red-green-blue color
:' presentation of 3 of the bands• A subimage from the Hodesto scene and centered

on Tracy, CA was used in these experiments.

i"_: Image ratioing was performed by simply dividing corresponding pixels from one

- band into another. The resultant ratio would then be combined with a similar . .

-. operation on the .other _ands_. {n-this "man, et_'_'holo_ c6mposfte'could be

J
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produced that effectively had six TM bands of information included in the !
result. Figure 30 shows the results of these processing operations. As a
reference, real end false color images are also shown. It is noted that very

good separation of land use and crop types result.

5.3 Principal Components Processing Results

A principal component analysis was performed on the 7-band Tracy sub-image
extracted from the Modesto scene. The purpose of this analysis was to assess

the "dlmensionality" of the TM data. Multlspectral images frequently exhibit

high correlation between the spectral bands. Thus, a great deal of data (!
redundancy can occur. This reduces the effectiveness of color presentation as ,
only three conventional spectral bands can usually be shuwn at one time. The
computation of principal components provide a set of component images that are
far less correlated with each other, and can be ranked with increasingly lower

variance. This usually results in fewer "bands" and can be used for color i
presentation with maximum information content (Refs. 5,8). ii

The results of the analysis are shown on Table 8 on the following page. From _
this table one can see that the first three components contain 97.2% of the

variance. It is also apparent from the correlation matrix that there is

significant correlation between TM bands I, 2 and 3. Band 4 is quite

uncorrelated with these bands, and _ccounts for the good color composites that i
are produced when thi3 band is used. Band 7 is slgnlficantlyuncorrelated with _

band 4, and thus the combination of band 4 with bands 7 and 1,2 or 3 should
provide good image presentations. Clearly, Landsat-4TMdata has at least three :_
significant principal components, as contrasted with Landsat 1-3 which usually ,_i

exhibits two components. It should be noted, however, that in spite of these
statistical results, the higher order components frequently provide interesting

and surprisingly good information, in spite of the apparent low variance that !
they show mathematically. This is discussed further in Reference 12.

5.4 Thermal Image Processing

A night time TM scene of the Buffalo, Hew York area acquired August 22, 1982 was ii
digitally processed. This band 6 thermal infrared scene is shown on Figure 36
in a gray scale representation. The image was edge enhanced, and the result of i!

this processing is also shown. It is of interest to note that individual i
streets can be seen in the enlarged edge enhanced subimage as well as several i
canals that are located in the region. Various false color enhancements of the

image were used to improve the information extraction potential of the data, and

three experlmental color products are shown on Figure 36. The dynamic range of

the data spans about 32 counts, and color encoding is very helpful in enhancing
the thermal contours and temperature distribution.
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Table 8 - Results of Principal Component Processing of Tracy Sub-Image

Hodesto December 8, 1982 Scene (E-40145-18082)

1 2 3 4 5 6 7

Statistics:

Heans 55.57 23.45 23.37 36.91 48.23 92.11 23.97
Std. Dev. 4.80 3.14 5.O0 I.05 1.29 2.09 8.63 (i

I:

Eigenval ues:

270.70 107.80 23.20 5.20 4.O0 1.60 O.70

Percent Variance:

! 65.50 26.10 5.62 1.27 1.00 0.40 0.10
i _ !

:-_ Cumulative Percent Variance:
L

_ 65.60 91.60 97.20 98.50 99.50 99.90 100.00 _4

!1
: _ Eigenvector$:

" 0.193 -0.176 0.596 -0.351 0.018 -0.671 -0.050
-: 0. 149 -0.064 0.333 -0.136 -0.064 0.362 0.842

0.230 -0.212 0.464 -0.100 -0.085 0.623 -0.530 _
, 0.282 0.897 0.272 0.195 0.030 -0.010 -0.052
: 0.768 -0.005 -0.489 -0.38S -0.148 -0.013 -0.011

0.017 0.038 -0.048 -0.275 0.951 O.123 -0.006
O.466 -0.337 -0.060 O.765 O.246 -0.122 O.062

Correlation Matrix:

1.000 0.891 0.915 0.022 0.553 -0.004 0.732
0.891 1.000 0.918 0.216 0.680 0.012 0.773
0.915 0.918 1.000 -0.003 0.665 -0.036 0.850
0.022 0.216 -0.003 1.000 0.404 0.207 0.046
0.553 0.680 0.665 0.404 1.000 O. 152 0.852

-0.004 0.012 -0.036 0.207 0.152 1.000 0.030
0.732 0.773 0.850 0.046 0.852 0.030 1.000

L
r%'
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6,0 SYSTEMS USED FOR DIGITAL IMAGE PROCESSING

Two digital image processing systems were used to support the analysis and

processing of the Landsat-4 data. Much of the image processing analysis and

display was performed on the IBM 7350 Image Processing System, and some

experimental work was done on the IBM Personal Computer. Programs were written

in Fortran, APL, and Basic.

6.1 The IBM 7350 Image Processing System

The IBM IPS is an integrated image processing system and display work station

directly attachable to IBM 370 architecture computers (Ref. 13). It consists of..

the following units:

7351 Control Unit - This device contains the memory, channel support and

processors need to support the display. It has a standard S/370 channel

interface and cabling and the control unit support a 7352 Color Image Display

Station, a 7353 Conversational Display Station, and can support up to six

additional terminals. The Image Processor subsystem contains special logic for

high speed programmable image processing and includes an _mage processor

arithmetic unit, six band buffer look up tables, a classification look up table,

interpolator, XY generator, mask buffer, and eight megabytes of memory for

working image storage.

Display Subsystem - This system has three 5-bit digital-to-analog converters

_" driving the high resolution RGB display, 4096 shades of color, a 1024 x 1024 x 13

bit refresh buffer, a pseudo color look up table, and an overlay plane for text /

graphics annotation.

7352 Color Image Display Station - The color display is a high quality, high, resolution (i024xi024) color monitor with the means for the attachment of a user

i provided color hardcopy device. The image quality is nearly photographic in

I nature.7373 Conversational Monitor Station - This monitor is used to support user _

interaction with the system and includes an 87-key keyboard, and a joystick

interface controlled by a programmable micro controller.

Host Basic User Subroutines - The support software consists of host resident

library of subroutines for high level interface control of 7350. It is c811able

from FORTRAN, PL/I, assembler, PASCAL languages.

[-_ Operational Use - When performing interactive image processing, the six band

, _ buffers are loaded with six i024xi024 8-bit subimages. Image presentation

r involves the selection of three of the six bands for color presentation using

:_ Blue-Green-Red or Intenslty-Hue-Saturatlon color modes. The look-up tables are

i used for color enhancement, and the arithmetic processors use used for spatial

operations such as enhancement or enlargement. The basic cycle time is about

3.5 seconds, so that edge enhancement or enlargement of a three band I024xi024
!

i ! subimage occurs in about ii seconds. Principal component processing can be
performed in about i/2 minute using the arithmetic unit, compared to about 20-40

ii minutes on a general purpose computer.

I IV-48
I.'i

,:r

O000000]-TSE06



6.2 Experimental Use of the IBM Personal Computer

t; A demonstration image processing system was developed for the IBM Personal

Computer (PC), and shown at the Landsat-4 Symposium (Ref. 14). The purpose of
this effort was to determine if meaningful digital image processing could be

_i= performed on a small inexpensive computer. This section will briefly describe
_& the results of our experiment.
.:T

= - _ Summary Description - The IBM Personal Computer is a computer designed for an
-_n_ :_ individual user. It has a 16K-256K byte memory, 40K byte of read-only memory
_vi: and uses an 8088 microprocessor. The auxiliary memories are two 320K diskette
_ drives and/or a IOM byte disk drive. An 83 key keyboard and high resolution 80

_:_ column monochrome display provide the means for an interactive terminal. An 80
i _, to 132 character/line printer can be a_tached for hard copy output.

i. ,C

i:!i Software and Functions - The demonstration programs for the PC were written
i i_. principally in Advanced BASIC with some assembly language code. The BASIu
_.:_ programs handle all the screen control and user-interface functions and many of
i_,.... the simple calculations that need floatlng point arithmetic. Table 9 on the

r_l'= following summarizes the various BASIC-coded functions. The assembly language
_ code is provided to handle computatlonally intensive operations and is

_-_ summarized in Table 10, also on the following page.

! _.?
F

_ o_.- Structures - The general design for the demonstration was to select a fixed size:,,ik
i _'_L subimage that would correspond to the capabilities of the display screen, i.e.

:_. 320 x 200 pixels. A subimage of suburban Detroit and Windsor, Ontario was
_. extracted from LANDSAT-4 TM/P data tapes An IBM 370/158 was used to extract a,y_

;_;. four-band sublmage which was then transmitted over a local network (RS-232
i:!_ interface) at 2400 baud to the IBM PC, and recorded on the PC 5-I/4" diskettes.
_ A separate program in BASIC computed intensity histogram data and formatted the
[ ._ four-band histogram display. This display was then stored on the same diskette
i_! as the images One double-slded diskette holds 322K bytes of data, which is
:o • sufficient for five 64K images. For the demonstration program the diskette
_:_Ti" contained one copy each of 4 bands, one histogram for each band, the 4-histogram
_ display, and a text file containing a brief narrative description of the data
_ About 40K bytes of free space remained on the diskette.

Image Processing Programs - The main demonstration program is menu driven, and

!. can thus be run with little or no user training. The program also supplies to
the user information about both the hardware and software. The application part

of the program allows the user to select among several sequences of processing

; of the subimage data.

i • ,

i _ Application demonstration - The application program consisted of the following
:_i? functions and events:

i. Display Description of sample image

_i 2. Display Histogram
- 3. Allow user to select 1 band of 4

t
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TABLE 9 - BASIC Functions

INIT Condition screen_ create cursors and read menus to

memory
SCOLOR Set the Color display as the active screen

SHONO Set the Monochrome display as the active screen

SFLIP Flip active screen between color and monochrome

ERM Write error message on current screen
LOADB Load Image Band B (check for already in memory)

LOADH Load Histogram (pre-created as a l-record file)

INKEY Wait for user to key in, then normalize key
and return it to caller (allow debugging escape)

INKEY/COLOR Like INKEY but intercepts color change requests

BLINK Blink current cursor while waiting for user input
PUTCURSOR Manages current cursor

SHOWTXT Display selected menu or image description ._
SELBAND Select working band from histogram display
PARTCOLOR Elicit color partitions from user, build TRT ,i

::" GETCOLOR Get foreground/background colors from user

_ CVIMG Call ASH color mapping function
FUNCOLOR Elicit (linear) coloring functions from user,

_: build TRT

BOXCAR Do Boxcar classification

PUTCROSS Cross hair manager for BOXCAR '_

MARKAREA Mark selected training area
. PUTDATA Puts intensity values on screen

MAXMIN Get maximum/minimum values for e_ch class
.._ CLASS Control ASH classification functions

I

1

TABLE 10 - Assembler Language Functions

MAPBITS(TRT) Convert all pixels via TRT into color and place
on screen

CLASS0 Set all class codes to 1

CLASS(MINMX) Compare all plxels to min/max and determine class
CLASSE(TRT) Convert all class codes via TRT to color and

place on screen
RDFILE(IMID) Read image file into image buffer
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L_

, 4. Allow user to select intensity coloring method

:_ . a) Color by partitioning

! :.i b) Color by linear functions

• : 5. S(_iect foreground and background color combinations
• _ 6. Display

/ a) Selected band using above options.

b) Numeric data relating to coloring method.

"" 7. Modify foreground and background colors as desired

• while displaying current image.
: "- 8. Select from the following options:

"_/ a) Re-color (go back to step 2).
_,-" b) Return to MAIN MENU.
[ ,

!7 c) Do box-car classification (step 9).
-_ 9 Using the image currently displayed the user may:

a) Select classifier training areas (up to 5
" rectangular areas for each of three classes).

_-_ b) Display intensity values of current band within
_ user-specified rectangle.

i:!:"" c) Process the training information (step i0)
r I0. Construct classification image,- [i

_-_[ : a) Use the training areas to construct parameters for
,=-, each of the 4 bands.

_ :- b) Apply the parameters to the 4 bands an display a
_.. composite image of 3 classes.

_i-: Ii. Modify foreground and background colors as desired
,=_ while displaying current image.

_'.: Program Size - The BASIC prcgram is about 750 statements long and the assembleri '

_ programs contains about 200 instructions. The BASIC program takes about ISK
_ bytes on a diskette. Once it is loaded and space allocated to variables, there
i_ are about 17K bytes left for program expansion. The assembler code and its

_ internal data areas takes about 450 bytes.

_: System performance - We were quite surprised to see how fast the PC could
" perform image processing functions. Once the data was loaded onto the diskettes,

_ the system was capable of interactive image processing. Table ii shows the
__ approximate timings for significant functions.
c

Table 11 - Timing for Selected Image Processing Functions

" Function Time Comment
MAPBITS 0.6 sec Translate table mapping 64K plxels

), CLASS 6.0 sec Compare 64K pixels with each of 6 numbers
, RDFILE 5.0 sec Read 64K pixels from diskette

Use of Printer for Hardcopy Output - As an experiment, the PC dot matrix printer

c was programmed to output an image, using a 4x4 dot matrix pattern. This
provided effectively 17 levels of grey for image presentation. Shown on Figure
40 is a dot matrix representation of a TM band 1 subimage of the Detroit airport.

I
/
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0
•:: Individual picture elements can thus be represented in a pseudo grey-scale form,
" and can be produced in minutes on the low-cost output device.

C

:: Future Plans for Image Processing on the IBM PC Experiments are being
,. conducted to improve both the functional capabilities of the system, and the

_: c. resolution of the displayed image. Because of the excellent image processing
i._- perfomaance of the PC, more functions and capabilities are being added to the

! : : application programs In addition, experiments are being conducted to increase
...... the image display size by adding a larger screen. To date, a screen with 1080

: /_' pixels by 809 lines has been used, and the color range has been extended to 512

i_-I different colors by the addition of a special memory card.

! •<e

i _ 7.0 PRELIMINARY CONCLUSIONS

7.1 TM Sensor Performance

i,_!i/" The following conclusions can be drawn on TM sensor analysis conducted to date:

....... • The data exhibit very good feature dlscernability; one can identify high
_;_::_ contrast features of 0.25 plxels (about 7.5m).

...... • The full 8-bit dynamic range does not appear to be adequately used at this

._-:i-:_';_'.._ time (based, unfortunately, only on winter scenes). The entropy of the TM
L_i_;.... data indicates only a l-blt dynamic range improvement of the TM data

i_ relative to the HSS data A presampler variable gain amplifier would be

.--_i:- effective in utilizing the full dynamic range of the sensor, or an A/D
! ,'_r_._ converter with more bits (eg. use of an on-board 9-blt A/D converter) could
L_.:: be used.

_-_!_:':: • The data exhibit some striping. There are at least three sources of this

!-_: striping: I) Per detector calibration has variability, 2) ground processing
L_.,_.!- has introduced null values at various count positions that occur in
i-_,_:'_ different count positions for adjacent detectors, and 3) coherent noise from

!_. a satellite subsystem has added to the sensor detector output causing
i_' additional striping to the data.
i_!_
!-

_' • The A/D converter exhibits a degree of non-linearity in the two least
....., significant bits. It is unlikely that this can be corrected.

.. • The band-to-band, registration of the primary focal plane bands (TM Bands
_ - 1-4) is within 0.I pixels in the along-scan and the cross-scan directions.

_" The band-to-band registration of the secondary focal plane bands (TH Bands
' ;_. 5,7) is about 0.7 plxels in the along-scan direction and 0.3 in the

"- cro_s-scan direction relative to the primary focal plane. The thermal IR

". band (Band 6) registration is about 1.5 pixels in the along-scan direction

_. and 1.9 pixels in the cross-scan direction relative to the primary focal
:I plane.

...._ • A number of cosmetic defects exist. A dominant cause of one defect is the
'"i algorithm used to compensate for failed detectors.

::i_
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7.2 MSS Sensor Performance

; The following conclusions can be drawn on the MSS sensor:

• The entropy of the MSS data indicates that the dynamla range is offlcJently
utilized.

• The data appear to be well calibrated, and show little striping
characteristics.

' 7.3 TM Ground Processing

Although the TM ground processing has produced data of very good quality,

several improvements could bu achieved:

• The current method of replacing a failed detector output by the output of an

adjacent detector is a uomputationally simple method. Although adequate in

the macroscopic sense, it causes cosmetic defects in linear and geometric

i features in the microscopic sense. For applications that require that

:. features be more truly represented, a higher order operator that
ii computationally determines a "best" estimate of the failed detector output

[ would be desirable. Expq_ _ments conducted to dace indicate that several
algorithms can provide better compensation for a failed detector and should

i be refined and used.

• Statistical intensity allocation during radiometric correction processing

• yields images with fewer observable defects (i.e., it contributes to a

reduction in striping).

• Spatial and/or frequency domain ground processing can reduce or

substantially eliminate certain noise defects present in the sensor data.

This applies in particular to the coherent noise in the TM data. Although

computational ly expensive, special purpose processors can be

microprogrammed to implement these algorithms to achieve high speed and low
cost.

• The geometric processing; of TH data to date has only compensated for
systematic errors. No ground control data have yet been used. However, the

current processlng has been done fairly well, and the images do not show

significant mirror non-llnearities or defects. The data are in a SOM

projection only and there is evidence that there is both scale and

non-linear errors in the products. Limited experiments to date provide

strong indications that TM data will cross-correlated very reliably. Given

a library of TM ground control points, there will then be the means to

correct the data to other projections and thus provide users with

geometrically correct data iD standard map projections.

• The TM data have been digitally enlarged using higher order resampling

algorithms to about I:i0,000 scale on an interactive display and 1:24,000 on

film. Good feature definition is still evident, and large buildings can be

i'
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discerned and identified, It is likely that the TM data can be used to
; improve and updat_ 1:24,000 land usa and cartographic mops,

* The TM data, when pro; ....._d using Principal Component processing, exhibit at
l_as_ 3 dominant components. This Is a significant improvement over the HSB

data, and provides additional color spaces for image presentation.
- [

• Ratloing techniques can be used to combine and enhance the :;evenTM data

• : bands for imago analysis and interprotatlon purposes.

.; • Special purposu processors such as the IBM 7350 Image Processing System

allow interactive image processlng and information extraction which results

"[ in improved usf_rproductivity.

7.4 MSS Ground Processing

' Limited evaluation has been conducted on the MSS ground processing. Therefore, _:

..[_ only these results can be reported at this time: _'

:I • The HSS da_a have only been produced in a SOM projection, with only

I systematic corrections made. No ground control has yet been used to correct- the data. Relative geometric comparisons of the TH to the MSS data

I indicated that the data has some residual scale and non-linear errors that
: could be eliminated by the use of ground control points.

_' 7.5 Use of Personal Computers

There are many who f_el that they do not have the financial or computational

resources to process the new TH sensor data. The low cost and hlgh speed of the
PC have demonstrated the following:

• The PC offers a cost-effective approach to small area image processing for ".
many standard image processlng operations and techniques.

• With the rapid availability of inexpensive memory and high resolution

displays for these computers, the PC technology will become increasingly
important for remote sensing applications.

8.0 RECOMMENDATIONS

Based upon the work to date, the followJnK recommendations can be made:

• Use a higher order failed detector algozichm for processing _M data.

• Implement statistical radlometrfc calibration processing to reduce
striping.
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* For future son,_or,_, u_o a variab]a gain pronamplor amplJft.or and/or proved,.

,: an A/D converter with morn bits (9 blt A/D converter).

'"" _ * Refine and u,_ spatial or fr0,q'aancy domain filters to rnduefi cob.trait _joi_;_:
,f I

prasnnt in the:TH data.

-'- • Usa ground control polntu to accuralmly c.orrect the HSS and TH data i._
':.-. .tandard map projo, ctlow_.

_: "_ • Tim secondary foc.al pl.ana bands ,dlo.]d be put, :Into rogtntratto, with 1.lit"

primary focal plane bands by sub-p.txal geometric c¢-'rect_lon, 'l.'hl';
/" correction should be combined wJLh tim goomc_trlc f:orractiou/mopph,:,;

operation so that only one, resampling ,reed be performed.T

-_ * Consider the use of pJxel sizes that would produce standard scale dat, a wll,h
commonly used film recorders (eg., 25m TM and 50m MSS ptxels).

..

=:,U.
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Figure 8 - Greatly Fxpanded Sub-Image of Washington D.C. !
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OF POOR QUALITY _

Figure 16 - Pacific Ocean
: San Francisco December 31, 1982 S¢:e_ne(E-40168-18143)
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Figure 17 - Pacific Ocean (Pixel-to-pixel Differences Along Scan)
"i

y,: San Francisco December 31, 1q82 Scene (g-40168-18143)
, p.

I

' IV-72.I

i

' (Di

t

00000001-TSG02



_ 300I

,'-z

200 __

'!' i
",a; S

• N

E _o
,:", R

.' y

• i 100

--'. O0 100 200 300 400 500 600

,,::[ Cycles per 1024 Pixels

7-.

". Figure 18 - Horizontal Fourier Transform of Pacific Ocean
, San Francisco December 31, 1982 Scene (E-40168-18143)

_ , (DC Component Omitted)
2

"&,,

¢ :

.L,

o. ,

'i
b

._. i
• t

,!

: .i IV-73
,' !

00000001-TSG03



• . ,:.

: INPUT

,y-

' :;- x1.0079 63.496 64.504 65.512

•_;

i,'_; "

:';:- OUTPUT

' (Detector 5, Band I)
• ..;,

_-.
L- _.

i

j ":,_ Figure 19 - NASA Radiometric Calibration Procedure

" I .............

_ " IV-74

"_'iii'i
'- JI

00000001-TSG04



fl

_t_IGI_IAL PA_ t_i
- . OF POOR QUALITY,

:.: (!!.. b _ ii ',:_,I, s

'" Figure 20 - Aerial View of RFK Stadium, Washington D.C.
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Figure 21 - Three Dimensional View of RFK Stadium Band 2
Clu-._;ap_,ak_: November 2, 1982 Scene (E-40109-15140)
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Figure 22 - Probabilistic Radiometric Calibration
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_;, Figure 23 - Unsuccessful Failed Detector Replacement (RFK Stadium)
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_._ Figure 25 - Three Views of the Potomac River
"_ Ch,:s_l_)eak(.,. November 2, 1982 Scene (E-_0109-151l¢0)
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1 Figure 26 - Decision Flow for Undecided Cell
,_ 32 kHz Noise Removal Algorithm
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_>: Figure 27 - Pacific Ocean After 32kHz Noise Removel
,_'t". San Franclsco December 31, 1982 Scene (E'40168-18143)
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i-:..:::.. Figure 28 - Noise Removal (Pixel-to-pixel Differences Along Scan) .:
i::!,.'; San Francisco December 31, 1982 Scene (E-40168-18143)
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Figure 29 - Sub-Image Around Tracy, California (Monochrome Bands)
Hodesto December 8, 1982 8cune (E-40145-18082)
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Figure 30 - Tracy, California (Color Composites)
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: Figure 31 -- Tracy, California (Principal Component Images and Maps)
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Figure 33 - Source TM Sub-linage
Chesapeake Novembor 2, ]982 Scene (E-4010_J-15140)
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=_:i: _ Figure 34 - Geometrically Corrected Sub-Image
_:_- Chesapeake November 2, 1982 Scene (E-40109-15140)
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_ Figure 35 - Geometrically Corrected Sub-Image Overlayed on Map
Chesapeake November 2, 1982 Scene (E-40109-15140)
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.: Pseudo Color 1 Black/Whlte
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Pseudo Color 2 Pseudo Color 3

Figure 36 - Thermal Night Images of Buffalo, New York
Buffal(} August ._.,"" 1982 Scene (E-40037-02243)f
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,i Figure 37 - Pacific Ocean After 32kHz Noise Removal by FFT
_" San Francisco December 31, 1982 Scene (E-40168-18143)

•7

Figure 38 - Noise Removal by FFT [Pixel-to-pixel Differences Along Scan]
San Francisco December 31, 1982 Scene (E-40168-18143)
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_',. Figure 39 - Different Mgthods of Re-Sampling
_ 0_ 10x Expansion of Dulles Airport Terminal, TM Band 1
"_- Chesapeake November 2, 1982 Scene (E-40109-15140)

",.r'':

"2 "
g

:'" " IV-89
4

-_°........,._"_...."_ ......................... 00000002-TSA0





 as- a19o
._ CHARACTERIZATIONOF LANDSAT-4TM AND MSS IMAGEQUALITYFOR

THE INTERPRETATIONOF CALIFORNIAISAGRICULTURALRESOURCES

'r

7

_. StephenD. DeGlorla
:- RobertN. Colwell

,- RemcteSensingResearchProgram
_ Universityof California

Berkeley 94720

i_:,_,, INTRODUCTION

_:,,: The primarygoal of our researchis to characterizethe performanceof
_,: Landsat-4'sMultispectralScamper(MSS)and ThematicMapper (TM) in terms of
z_._ spectraland spatialresolution,radiometricsensitivity,and geometricfidelity.
_'::. A major objectiveis that of determininghow these characteristicsaffect the !_

utilityof the data for naturalresourceapplications. Our overallapproachfor

iT_ characterizingthe qualityof Landsat-4MSS and TM data entails: (1) analyzing
_,o.. Landsat-4TM spectraland spatialperformancein terms of spectralvariabilityof
:_ naturaltargetsand the TM-groundinstantaneousfield-of-view(IFOV)variability
_:. in level and mountainousterrain;and (2) determiningthe suitabilityof TM and
_" MSS image productsfor characterizingrenewableresourcefeatures.

For the early phasesof our research,as reportedupon in this paper,our
• objectivesare to: (I) developa basic understandingof the TM data in terms of

spectraland spatialcharacteristics,CCT and film formatsand products,and
,-_ specialproblemsin data handling;(2) determinethe extentto which major agri-
,-: culturalresourcesand conditionscan be detectedand identifiedon TM image
_,, productsand field-specificspectralstatisticalsummaries;and (3) evaluatethe

,; qualityof TM imageproductsin comparisonto simultaneously-acqulredMSS image
products.

• Duringthis phase of our research,our focus is on evaluatingthe qualityof
TM and MSS data for the interpretationof California'smost importantresource--
agriculture. Table l lists the major attributesof Californiaagriculturewhich
make Californiathe leadingagriculturalstate in the nation (Referencel). In

• California,there is a diversityof crop types and practices,field sizes and
• shapes,and sell and landformconditions,which providesnumerousopportunities
:_ for evaluatingthe qualityof Landsat-4data for meetingthe inventoryobjectives
i_ of agriculturalstatisticiansand resourcemanagers.
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,_ APPnO_CH

The approachfor accomplishingour objectivesis as follows:
ii

: (I) Acquirethe first avallabl_Landsat-4scene of an active test site in
California'sCentralValley. An active agriculturaltest site is one in which

_C ongoingprojectsare collectlngd_talledfielddata, These data consistof
.... groundand aerialphotographsand descriptionsof specificfield conditionsand

croppingpractices.

:{ (2) Acquire,process,anl catalogsmall format,low altitude,color oblique
aerialphotographyof selectedareas within the scene to documentmajor agronomic

: conditionsincludingcroppingpractices,groundcover,and field conditionsat
: the _imeof the Landsat-4overpass. Acquisitionof this photographyshouldoccur
L coincidentwith the overpass,

"T (3) Compilethe availablegrounddata for the area imaged to reconstruct,as
accuratelyas possible,the envlronmentalconditionsprevalentat the time of the

i_ overpass. The sourcesof grounddata for our researchinclude:a) Land Use Survey
_,. Maps of the CaliforniaDepartmentof Water Resources(DWR),publishedat a scale

of 1:24,000and includingindividualfield boundarieswhich are outlinedand
..... labeled(Reference2); b) the U.S. Departmentof Agrlculture'sstatisticalsum-
_o- maries for crops and climate(Reference3), and c) field crew notes and data, as

"i- complledby personnelof our own Re_oteSensingResearchProgram (RSRP)at the
_. Universityof California.

:,i_ (4) ProduceTM and MSS black-and-whlteand color compositeimage products
:._:_ for interpretation.

:_,_ (5) Locatethe field data and aerialphotographiccoverageon the TM and MSS
", imagery,

•:_ (6) Relatethe environmentalconditionsto the TM and MSS spectraldata in
!_" both analog (film)and digital(numeric)formats.

:_:. (7) Determinethe interpretabilityof major agriculturalcrops using these
,: Landsat-4spectraldata based on establishedtechniques(References4,5), Inter-
.: pretabilityrequiresthat the image productsallow both the detectionand the
_: correctidentificationof featuresof interest. Detectionrequires,at a mini-

_,-_ n_um,the simplerecognitionor awarenessthat a featureIs present. To identify
_, the featurerequiresa synthesisof spectral,spatial,texturaland temporal

characteristics(Reference6),

'.. Our objectivescall for interpretingdiverseagriculturalfeaturesusing image
products. Such productshave both advantagesand limitationsin that photo-like

_'" imageryprovidesthe best formatfor evaluatingspatialand texturalcharacter-
istics,but has limitedusefulnessfor analyzingdetailedspectraland temporal
characteristics(Reference6). When an image is created,whether In black-and-
white or In color, _om digitaldata, the data must be compressedinto a limited

" numberof gray (or color) levelsthu_ _bscurlngsubtIe spectraldifferencesof a
"- featureof interest. In addition,c_;or variationdue to photographicprocessing
;_ may obscuredata criticalfor featureidentification. Inasmuchas these con-

-:- ditionssuggestthat some of the analysesof Landsatdata can best be made using
the originalnumericdata rather than imagesproducedfrom these data (Reference

7), such an analyslsis being Includedin our investigations.
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RESU,_TSAND DISCUSSION

The first availableLend,at-4scene for on_ of our actiw t_t _it_ was
acquiredon December8, 1982. Thi_ site is locatedin San aoaquinCounty,Call-

; fornia The importanceand diver_it.vof aqriculturalprnductionin this county
' is shown in Table 2 (ReferenceI). The image data wnre receiwd by the Prince

Albert Stationin Canadaand forwardedto NASA_GoddardSpace FlightCenter (BSFC)
for subsequentprocessiDq.The scene identificationnumber is #84014518082X0,
World ReferenceSystem (WRS)Path 43, Row 34. FigureI shows the locationof

.: this scene in NorthernCa1'ifornia(solidline). It al_n shows the three other
i principalscenes coveringU.C. Berkeley'sprimarystudy areas (dottedlines).

The TM data were processedas a "P" tape by the LandsatAssessmentSystem (LAS)
at GSFC using the interimSCROUNGEimage processingsystem. The "P" tape product
is both radiometricallyand geometricallycorrected. The computercompatlble
tape (CCT),at 6250 bpi,was forwardedto the IBM Pale Alto ScientificCenter,
c/o Mr. Ralph Bernstein,for subsequentprocessingand analysisby IBM and U.C.
Berkeley. The MSS datawere purchasedat the EROS Data Centeras a CCT-AM ("A"
tape)which is radiometrically,but not geometricallyprocessed. Table 3 sum-
marizesthe basic Landsat-4spacecraftand sensorconstants. Referenceis made
to sourcedocumentswhich should be consultedfor more detailedinformationon
satelliteand ground processingoperations(References8,9,10). Table 4 gives
the spectralrange of the TM and MSS sensors.

Due to winter ground fog in the CentralValley,the first opportunityduring
which to acquiresmall format,low altitudecolor obliquephotographyafter the
December8 Landsatpass occurredon January20, 1983. On t_at day, severalpre-
selectedtransectswithin San JoaquinCountywere flown and specificfieldsphoto-

_=' graphedusing dual 35mm cameras. One camera containednaturalcolor film and the
other,color infraredfilm. The aircraftaltitudewas 500 m. The film was proc-
essed commercially,and each transectand framewas labeledand annotatedon DWR
land-usemaps at 1:24,000scale. An exampleof the qualityof this photography

_ is shown in Figures2aand 2b.
!,

= Given the vast area coveredby each Landsatframe,two 21,000hectarestudy
areas within the Countywere selectedfor detailedanalysisdue to the diversity
of their agronomicand pedologicconditions. The VernalisStudy Area is dominated
by alluvialand low terracesoils supportingorchards,field crops,and native
pasture. The CaswellStudy Area is dominatedby basin and alluvialsoils sup-
portingmixed pasture,field crops,some orchardsand vineyards,and extensive
nativevegetationin CaswellState Park (Referencell). Detailedagricultural
land use maps and legendsfor the Caswelland Vernalisstudy areas are shown in
Figures3 and 4, respectively(Reference2).

By thoroughlyexaminingthese detailedland use maps along with the oblique
aerialphotographsand publishedagronomicand climaticdata, we were able to
determineenvironmentalconditionsprevalentat the time of the overpass. Cli-
matic conditionsone week prior to the overpasswere varied. A seriesof Pacific
Ocean stormshad crossedthe State with over one inch of precipitationfalling
in northernSan JoaquinCounty. No precipitationfell duringthe week of the
overpass,and temperatureswere near normalfor the study area. Precipitation
was heavy during the periodb_tweenthe overpassand the acquisitionof the ob-

" lique aerialphotography. As periodicstormsand cool temperaturespreceeded
both the satelliteand aerialphotographyacquisitions,variationsin surface
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: _,_}iI ,i_Ji'.l.¢_cc,h_,t._.J_e.nthe: two dal.n,, of data ac.qul._Itlan w_re nrlnlma]. Aqranamlc
•,.!; _:(mdil.i_Hl'; _,.,_'_,d(,,io_aled by '.;l_]w{IrcJwth af small .qralrls, which w_,,rp.50'),',em_r_Ip.nt,
,;! stal.('wid_, at: I:I., tllllr_ (:_f thp. _vp.rpar,s. Pr_.paratlon for plantlnq th0_,ri)lilaInInq

.'.nlall ,tr',_ll_ l"-t_dd,qwa_ in pr.!]r_..qr, with much mal_t, fallow _o'11 pra_nl:. Fl_,,Id
..: l)l"(q)al",ll i(lll JllJ:lulh.l _,/t:_!d c(inl;r(l]i pr_-irrl!jatlan and planting. Halr'v(:_;,t'lll_l ul:

II 'all| !-,()I"(IIIIIIi dlld i:ilr'll llild t'f!(_(Hrltly I}PP,II dfJrlP, In f;fllllP, f'leId_q. ri_.l._ I_ ind'l{_at_)d
Iii I,(_I.I_,,tlHly al'i,,_!; l_y I I,, l_rm,r!n_:[,(_'l"grain and corn ntubl-,1_; fi_.Ids. 5am_,

: I I,iII,_,I al la'lla _:ul.lin(l wii'; in l)rnql"(_._5,and many (_v_rwlrltf, red 5uqar l}L,(-d"f'l('ld;_
• W_!V_!(,vldi_lll l'r'uli'lli(l and w_._l cnntrc_lwr:r_,the. dominantf_.Id a(:tivit'le5 inj , ,

:,. 1,1., _l(,_:'ldl_,_,,(_l(:hard_i inl(I v'ro, yard,q, Milll,y sp(:ctral varlatinns In tlH! ()rcl0ard_;

l'i";llll,i)d rl,l)lll l,Jli,_ h'Jqlh !ii_(,_(:l,l-,il] r()fll)(:tance of th_ grass cflnopy iJnde,rsl;i)ry In{_v'(:ha_,l,.,()I" viir'yin!l ii!B,_. Pahtul o !]towlh and conditions were al)ow, norlfli]l dull I",11
l",iW)i'al)'l_, _:l'Inhvl:l_: {:()ndil.'l(m_; l;_l"lor to the overpas,,;. Both native and irriqated
lhi.L;l.ur'(_ (:_xn_Pl(Hl(:e(i rapid ht:rha(:e()us !irowth prior to the overpass, The cool,
w_l. (:_u.liLlon_ l,li_l l_revailed after the overpass retarded grass qrowth; condi,:.
(;IOHSd()(:Ulllt!lll:P.dOilthe aerialobliquesacquiredsix weeks after the overpass

• w_i"e very :;imilar to those present at the time of the overpass.

lma!jel)rudu(:'Lsai,lnuHil_ricdata were extractedfrom both the TM and MSS data.
IH i,lauel)ro(u(:.tswere generatedusin!jthe IBM 7350 ImageProcessingSystemat
l;heIBM Palo Alto Scientific(:enter'(Reference12). Varloussingleband and

... mul_i-l,andimageswere displayedon the 7350'scolor monitor;35ram_lideswere
L. us(,lto i,lauethe data displayedon the screen. Initialanalysisof the TM data
_. was acc_),Iplishedusinq these 35ramslide products. MSS image productswere gen-

eraLedusinu the RemoteSensingImageAnalysisComputerSystemat the Space
Sciencestaboratoryon _he U.C. Berkeleycampus. Digitaldisplayswere copied
onto 3511,,_a_d Pnlaroid(l'ype809) color film using a Matri_ Color GraphicsCamera.
I,_agesoi'indiv'i_lualTM and MSS spectralbands for the Caswelland Verna'lisstudy
areas are shown in Fiu_ves5 and 6, respectively. Throughthe use of these and
color i,_a9eproducts,directcomparisonsof tone and texturalsignatureswere
made betweenthe obliquephotographyand the grounddata in order to determine
the FM and MSS spectralcharacteristicsof major agriculturalfields in the area,
and tu locatespecificfieldsfor extractingnumericdata from both the TM and
MSS CCI"s. Using these numericdata, we estimatedthe wlthin-fieldand within-
regionspecLralvariability,by band, for both of the Landsat-4sensors. These
numericdata for the CaswellStudy Area are summarizedin Figure 7 where spectral
data for each of t.heTM spectralbands are plotted. The thermalband (TM6)dis-
plays the lowestvariabilityand range of valuesfor thls area. This is expected
given the ]20-meterIFOV and limitedradianttemperaturevariabilityof the area
sampled. In ihe reflectivebands,the spectralvariabilityincreaseswith wave-
length. Field-speci-Ficspectraldata for the Caswellstudyarea are tabulated
in Table 5, and plol;tedin Figure8. The fieldsand crops selectedare those
which do_Hinate t.he_tudy area in terms of spectral,spatial,and texturalchar-
acl.erlstics.

Sy'._l:en_at.icanalysesof both imageproductsand numericdata for thes_ study
_reas haveyieldedthe:followingearly results:

(1) Th,-uverallqualityof the TM data are excellent. This qualityis il-
lustratedfor all bands as shown in comparisonto the MSS data in Fixtures5 and
6. BoLh study arc:ascontainfieldsof variableshape, size,orientationand
croppinqpracticeson contrastingsoil groups. Spectralvariationsin fallow
fieldsare pri,_arilythe resultof soil moistureand surfaceroughnessvaria-
bilil:ydue to variou_stagesof field preparationfor plantingsmall grains.
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._ (2) Thnre is p.xtnnslvecoherentnoise In tlm MfiSdi.rLillor all hamlr.,.Thl:;
nnl_e in illustratp..d'inFi.qurp._5 and 6. The.noi._nwFF_:cl:ndal.,iqualll:vii,I_a,ld_
l and P- tel a _qPp.at_r p,xtent than 'In tlm two n_ar._llM_rar'f_dball(In. Wt_ anl:i_:illatn

. th'l_n(._l_e,will cau_n ,_lqnlfIcantcla._._Iflcal;l_nerr,at,;for malmIrpl<:mallFinl_In
ahd :_p_.,x'.ialtycr_Jp_ In CalIf_rnia whnn u,_lllq MSSdata. Thln lllil_;(_ i', ,_I',_, ,ll_.
parnnl: in TMBand 1 for both Study Arna_ (F'lqurc: !$a). TIp, l,,ll_Id r:,I' l.lJl,; t4!;,;
and TM noI sn ha_ not b_,n determi rind hy tlff.,.;_: invn_i.l qnl.ol'u,

(3) ,spnctrall,y, the additi(_n of the First ;_hnri._wilv_ Infi,,_i'_d l;al,_l (IInNd !,)
han _iiini PIcantly enhanced our _I._'Il ity t_ dincrimi nil'IJ_,di 1'l:_,i,_mt_:r_l_ i,Vl_; a,',

:. ._,llownin Fiquru 8. Iii the visible and lmar 'lilfrilred llanllf,, l,lint.(, 1!; iin !;l(liii'l l.
,,i CSllt dtl'_fer£!lli;e bntween thl_ e_ll,.qsr lier)t and alfalfa rlpectra, Ill I.lir, lill(Id'l(_ Ill..

frared band, h(lwovnr, we see significantly d'i'l:'l"#_.r_mt._lmc'l,ral va'lil,_,,; t',!';ullii_l
frolll the illCroilsod absorption el" ttle radiattoii hy t.ti(! tilqti(_r ('.l.ilil;(!lrl. Irl '1_'1'
watel' uf the SU!lar beet plant. Several other _po(:tra'l I'#'O':;S(IVet'!i ('l,fillf) _,l!lfl;'.i)
between the visible and the nriddle irlfrared regiens are also di;;ll'lay(!_l, itm_,_,

: crossovers provide enhanced capabilities for discr'llllillal;ing alld i(I(_!ll!;l('yilly llI(l,'ilii'

' crop groupsand land cover conditionsthai are con_nolilyconfu._;(;dSl_(;(:l,i'_'l'l,y'ii_
the visibleand near-lnfraredregionson single-dateimagery. These (_bvious

.I crossoversoccur betweenorchardand bare soil; betweenmixed l_,-_._;tur(_.,,:,uyar
i beets,and alfalfa;and betweengrain stubble,mixed itiastllre,alf'aIIa,and :,ll!lar
:_] beets. All of these numericcrossoversare illusti'atedin Piuure !ib.-ea.,:.<;h'li:ts
.....I in gray toneson the image products. The accuracyof crol_group or ci'optyl_e

classificationusing single-dateor multl-dateLandsat-4data wi'lilil(:r(_.ase.if
°. TM Band 5 is used in conjunctionwith TM Band 4 and/orBand 3 as simp'I(_ra_ios,

" _ii linearcombinations,or other commonlyused transformations.

: '_ Photographicimagesof the thermaldata acquiredby the TM sensorFor both
_ study areas are shown in Figure6e. The dark tones on this imageare tho,:;_land

i-,-t surfaceswhich have low radianttemperaturesat the time of the overpass (0908
_':: hours,PST), and representprimarilyfieldsof grain stubbleand bare soilwhich ,
i!,_'! have highmoistureconditions. The light tonesare those surfaceswhich have high
".i radianttemperaturesat the time of the overpass,and representfieldsof decid-

uous orchards,field crops and mixed pasturewhich have relativelylowermoisture
:: conditionsthan the bare sell fields. Improvementsin the processingof _he IM

..,: thermaldata are still neededto reducethe radiometricstripingresultingfrom
,. the bi-directionalscanning.

.:: (4) Spatially,the twofolddecrease (28.5m vs. 57 m) in interpixeldistance,
.:, and fourfolddecreasein area per pixel of TM data allow for -improw_dspect,ral
_e characterizationof individualfea_ ,esdue to a reductionin measurementerrors.
- This reductionresultsfrom the al_, ty to extracta highernumberand proportion

of "pure"pixelsthat are minimaflycontaminatedby "boundary"pixels. Mappin_
at more detailedlevelsof classificationwill also be enllancedby usillythe

_.- spatiallyimprovedTM products. The improvedspatialresolutionof the TM sensor
: is best illustratedin Figures6a-d of the VernalisStudyArea, Nulilerouslinear

featuresand variousangles are depictedon the imageproduct,s with nilnimalscan.-
: angle effects. Small linear ,eeaturesst.chas light-dutyroads,water canals,and
• subtle field boundariesare easilyresolvedon the TM image product,l_ul.are not.

consistentlyresolvableon the MSS products. Severalexamples In i;heVernalis
area illustratethis point. The New JerusalemAirportis shown on the ri!lh.Fhand

, marginof each image in Figures6a-d as two parallel,concreterllliwaysIocal:ed
• alongsidecroppedfields. Runningparallelto the runwaysare taxi stripssep.,

aratedfrom the runwaysby bare soil fields;these taxi sl;ript;are linl:rn..<;oIvahlo
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_'. an _ithor imago ]roductduo to the spatialr_,solutionof thB sensorsand lack of
sufficientcontra._tbetweenthe.concreteand barn ,_oll.The field crop qrowing

._i._,, an bath _idp,_of the upp_.rrunwayallow_,_ufflcientcantra_tfor bath ._n_orsto
_: ro,_alw_hi_fea_uro. The lawyerrunway,however,'I_houndedhath by a field

crop, craatl,qqa hiqh cantrantupper boundary,and by a hare ._allflald,croa_In,g
"" a low contrastlow_rboundary. Thl;;variablecantra,_tboundarymake_ the Iowar
.. runwaybarelyre_mlvableon the TM Ima,_ept"(_duct_and no_ resolvableon the MSS
" imageproductsw'th the exceptionof tho pnrtlon_f the runwaywhere there i,
" ._ufi'icienteantr(_stbetweonthe concreteand l_iresoil o be resolvedby _'.,,-near_
.:i infraredchannel,MSS Rand 3 (Figure6c),
L

:' (5) The 8-bit signalguantizat'l_nl_velef the TM providesan image that I_
_,:.. rich in detail,_.ptimizinqthe texturalcharacteristic--amajor attribut,,used 'In
.i featureidentlficatlon.The improvedtone contr_stand ;ncreasedsharpnessof

featureboundarieson the TM image products,in comparisonto the MSS products,
: is readilyapparentfrom a carefulviewingof Figures5 and 6,
.!

'- (6) No geometriccomparisonswere made betweenthe MSS and TM dat_ because
.... the MSS data had not been geometricallycorrected, Quali'_a,ve co_,.':!_risonsbe-
",.i tween the TM data and USGS 7)_'topographicquadrangles,however,;';_,,,,_rto in-
" ! dicate that the geometricqualityof TM data is sufficient'f)ru ,L .,_gland....................
. use maps and field boundariesat this scale (I:_.4,000)

SUMMARY

Evenat this early stage of our resea,,'.,,ei:indthe qualityan(_utilityoF
-L, the TM data to be excellentfor meetingmost of the inventoryobjectivesof the
,__ agriculturalresourcespecialist. The TM data will be extremelyvaluablefor
-=-!' crop type and area proportionestimation,updatingagriculturalland use survey
,_, maps at l:24,000-scaleand smaller,field boundarydefinition,and determining
"_; the size and locationof individualfarmsteads,
.i..,,

;. Ongoingresearchactivitiesare focusedon making spectraland spatialanal-
:.. yses of both MSS and TM analyticalfilm products. Based on the improvedspectral,
_ spatialand radiometricqualityof the TM data, we see a renewedemphasisand
!:. interestin directvisual interpretationof these imageproducts,both for up-
.:. datingand _provingland stratificationin supportof resourceinventoryand for
" enhancingth_ image analyst'scontributionto computer-assistedanalysispro-
;. cedures,
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Table I.
JT

IMPORTANCEOF CALIFORNIA'SAGRICULTURALRESOURCES

ii | ii ii i ........ i

LeadingAgriculturalState in U.S.

200+ CommercialCrops

' 14 MillionHectaresin Farm Production

Leads U.S. in 48 Crop and LivestockCommodities

50_ of U.S. Fruitand Nut Crop Production

33% of U.S. VegetableCrop Production

$13.9 BillionCrop and LivestockProductionValue

$4.2 BillionExportValue (Cotton,Rice, Wheat,Others)

i i i ill i

Table 2.

AGRICULTURALSTATISTICSFOR SAN JOAQUINCOUNTY,CALIFORNIA

i J l J : i i: i i,

365,200Hectares

6th LeadingAgriculturalCounty in California

$770 MillionCrop and LivestockProductionValue

Major Crop Groups:

Tree Fruitsand Nuts

Vineyards

Field and Truck Crops

Range Pasture,Irrigatedand Non-lrrigated

AverageField Size_25ha

i i i ii
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Figure I. Locationof the principalLandsat-4
scenes coveringU.C. Berkeley's
study areas.
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Table 3.

"" BASIC LANDSAT-4SPACECRAFTAND SENSORCONSTANTS

i ,,,,,,,,, ,,i

.- SPACECRAFT

_I, Sun Synchronous
_- NominalAltitude 705.3 km

_ NominalSwath Width 185.0 km
_,_ Orbit Inclination 98.2°
iL Orbit Period 98.9 min
i,,:_ RepeatPeriod 16 days

_ Sidelap fat equator) 7.6%
-::._C_ Sidelap _at 40° Latitude) 29.0%

_'" SENSOR

_- MSS(partially processed image; CCT-AM)

__ Nominal number of pixels/line 3240
_,- Numberof lines 2400_v

/C Nominal interpixel distance 57.0m
,_ Nominalinterlinedistance 82.7m

- MSS (fullyprocessedimage;CCT-PM)

Numberof pixels/line 3548
, Number of lines 2983
<

-_ Interpixeldistance 57.0m
Interlinedistance 57.0m

_ Signalquantizationlevels 127

i. TM (fullyprocessedimage;CCT-PT)

i; Numberof pixels/line 6967
Numberof lines 5965

_. Interpixeldistance 28.5m
Interlinedistance 28.5m

Signalquantizationlevels 256

r
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Table 4.
k

SPECTRALRANGEOF THESENSORSON LANDSAT-4

I ii i I

THEMATICMAPPER(TM)

Band Spectra! Range,_m

1 0.45 - 0.52

2 0.52 - 0.60 i

. 3 0.63 - 0.69

4 0.76 - 0.90

5 1.55 - 1.75

7 2.08 - 2.35

6 10.40-12.50

MULTISPECTRALSCANNER(M$S)

Band SpectralRange,pm

1 0.5 - 0.6

2 0.6 - 0.7

3 0.7 - 0.8

4 0.8 - 1.1

I I
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Figure 2b. Low altitude oblique photographyof the Caswell Study Area (top)
and the Vernalis Study Area (bottom).
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,-' AGRICULTURALCLASSKEY_' ,_, ......
; b

., O - Deciduous Fruits and Nuts ...

:-_ F - Field Crolbs

r;;: G " Grain and Hay Crops

": NV- NativeVegetation
:. P - Pasture

/;': P1 - Alfalfaand AlfalfaMixtures

; P3 - Mixed Pasture

•l_" T - Truck and Berry Crops

:.. V - Vtneyard

"t

"! Figure3. Agricultural landusemapandlegendforthe CaswellStudyArea.(
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AGRICULTURALCLASSKEY

D - Deciduous Fruits and Nuts

F - Field Crops

G -Gratn and Hay Crops

NV - Native Vegetation
P - Pasture

: PI - Alfalfa and AlfalfaMixtures

P3 - Mixed Pasture

T - Truck and Berry Crops

.._ V Vineyard

;: Figure4. Agriculturalland use map and legend for the VernalisStudy Area.
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: Figure 5a. TM Bandl (Blue) for the Caswell (top) and Vernalis (bottom)
Study Areas. Coherent noise is evident on boLh _mages.
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Figure 5b. Comparison of the image quality in the green region of the spectrum.
TMBand 2 (Lop) and MSSBand 1 (bottom)_'for-the Caswell Study Area.
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".-,'i Figure 5c. Comparis_)nof image quality in the red region of the '._pectrum.
;i: TM Band 3 (top) and rISS Band 2 for the Caswc,l l Study Area.
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Figure 5d. Comparison of image quality in the ne,_r.-infraredregion of the
spectrum. IM Band 4 and FISSBand 3--(_b-o-tt_l]_f6_r- the Caswell
Study Area.
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Figure5e. TM Band 5 (top)and TM _and 7 (bottom)for the CaswellStudy Area.
The delineatedarea indicatesthe look directionof the oblique
aerialphotographshown in Figure 2b. (top).
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Figure6a, Comparisonof image qualityin the _rgennregionof the spectrum.
TM Band 2 (top)and MSS Band I (bottom-)--forthe Ver'nalisStudy
Area.
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Figure 6b, Caml)arisot)of image quality in the red region of the spectrum.
TM Band 3 (top) and MSS Band 2 (botto_li)for the Vernalis Study

! Area.
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_'; Fi(jure6c. Comparisonof image qualityin the near-infrared regionof the
spectrum. TM Band 4 (top) and NSS Band 3 '(bo--'f_m) for the

i Vernalis Study Area. The delineatedarea indicatesthe look
direction of the oblique aerial photograph shown in Figure 2a,
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Figure6d. TM Band 5 (top)and TM Band 7 (bottom)for the VernalisStudy Area.
The delineatedarea indicatesthe look directionof the oblique
aerialphotographyshown in Figure2b. (bottom).
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Figure6e. Imagequalityin the thermalinfraredregionof the spectrum.
TM Barld 6 [or the Cas_v_'l-l_-(top ) and for the Vernalis
Study Area (bottom).
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EVALUATIONOF THEMATICMAPPER PERFORMANCE
AS APPLIEDTO IIYDROCARBONEXPLORATION

Dr. John R. Everett, Dr. Charles Sheffield, Dr, Jon Dykstra
Earth SatelliteCorp., 7222 47th Street,Chevy Chase,MD 20815

;; TM AND GEOLOGICEXPLORATION

i_ Since the early 1960's,the scienceof geologyhas been undergolnga major
revolution. The new paradigmof plate tectonicsand seafloorspreadingis
replacingthe older paradigmof a rigid, stableearth. InherentIn the

_: acceptance of plate tectonic theory ts a 9rowing appreciation of the role of
plate motion in determining the location of mineral deposits and hydrocarbon
accumulations. It is fortunate that developments in spaceborne remote
sensing have paralleled these developments tn geologic thinking. As a con-
sequence, we nave remote sensing tools that vtew the earth with appropriate
scale and scope to enable us to appreciate and map the regtonal structures
that reflect the motions of continent-sized segmentsof the earth's crust.
We received our first glimpses of the earth from space with photos from the
Apollo and Gemini fltghts. The first three Landsat satellites gave us near
ubiquitous high resolution (80 metre) coverage in four spectral bands. These
data have had and continue to have enormous impact on all facets of the per-
ceptton and managementof renewable and non-renewable natural resources and
the environment.

Before speculating on the impact of the new data types from Landsat-4, tt is
useful to take a look at the role data from th: first three Landsatsatellites
have in geologicexplorationand their currentlevel of acceptance. In a
generalsense,Landsatdata has made ItsmaJor contributionto hydrocarbon
explorationin the spatialdomain. In mineralexploration,Landsathas
revealedsome spectralinformation,but again the major contrlbutlonis
spatial. The synopticvlew of over 34,000 square kilometresof the earth's
surfaceon a singleLandsatimage permitsthe detectionand mappingof major
regionalstructuresassociatedwith the geologicdevelopmentof entire geo-
logic provinces. It Is also possible,throughspecialdigitalenhancements,
to map some of the more subtlesurfaceexpressionsof fracturing,foldingand

: alterationassociatedwith buried hydrocarbonaccumulationsand the emplacement
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ef mineral deposits. The data makeit possible to interrelate widely _epa-
ratedgeologicfeaturesand detectsubtlechangesthatoccuroverten_of
milesand,hence,havegoneunnoticedon conventionaltypesof data. Perhaps
mast important;of all, the new perspectivethatthe viewfromspaceprovides
stimulatesus, evenforcesus, to thinkof geologyin newwaysandperceive
new possibllli:les.Trulyit isn'ta panaceabut it Isan extremelypowerful
tool. It hasnot by Itself"found"an oil fieldor mine,but it hasmade
significantcontributionsto the explorationthinkingthatled to thediscovery
of mi111onsof barrelsof oii andmlllionsof tonsof ore.

At thispoint,it !s appropriateto considerhow industryregardsthisnew
tool. Bob Porter(President,EarthSate111teCorporation)oncecharacterized
the oli andgas and mineralexplorationIndustrle;'acceptanceof Landsat
data or any technical innovation as progressing through three stages:

1. An initial"GeeWhiz"stage;
2. An "Interestingbutnotyet commercial"stage;and finally
3. Full acceptance and integration of the innovation as a bona fide

exploration tool.

The progression through these stages appears to be a direct function of the
geologists'and geophysicists'experienceandfamiliaritywiththe tool;in
thisinstance,satellitedata. Consequently,not allexplorationgroups
progressthrougheachstagein unison.

In the earlier"GeeWhiz"stage,the geologistmay be impressedby the
preserlceof a familiarstructureor landformthatis visibleon the imagery,
or by a subtlefeaturevisibleon an exoticdigitallyenhancedcolorimage.
At this stage, someare tempted to see satellite data as the answerto all
explorationwoes,and the potentialto "oversell"Itscapabilitiesis a real
danger.

Thls stageis usuallyquicklyreplacedby the "Interestingbut notyet
commercial"stage whereimageryproducedfromtheLandsat data ts viewed
r Inlyas a cheap,low resolution,aerialphotosubstitute.To so view _
L,'ndsat imagery ts to miss both the unique geologic perspective of the i
imageryand the potentialcontributionavailablethroughcomputerprocessing
and data base integration of the digitaldata.

The final stage is characterized by the Integration of the geolegic information
gleanedfromthe Landsatimagerywitha completeoliand gasor minerals
explorationmodel. At thispoint,the explorationgeologistfullyappreciates
the potentialsand limitationsprovidedby the satellitesystemand routinely
appliesthe satellitedatato the designandexecutionof explorationpro-
grams. Thiswholeprocesstakestime. It tookthegravitymeter_nd the
seismographabout40yearsto makethe transit;thedigitalcomputerhas
progressedmore rapidly.

At present,I thinka healthypercentageof the explorationcommunityis
workingout of the secondstageof acceptance.Thereis a greatpromisethat
the ThematicMapperdatawillprovidetheresultsnecessaryto convincethe
explorationgeologistand,more importantly,the explorationfinancialmanagers,
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to move fully Into the final stage. However,in order for this tn occur,
there,mu_t exist a continuityof data and, _qually important,an availability
of data at a r_.asonable(that Is, user justifiable)price.

Th_ two major advantage_of ThematicMapper data over that of the MSS sy._tem
are its increasedspatialresolutionand its greaternumberof narrow,
strategicallyplaced, spectralbands (TableI). The 30 metre plxel size.will
permit finer definitionof ground featuresand therebyimprovethe reliability
of photo-geologicinterpretationof geologicstructure. Of equal importance
is the increasedhomogeneiV of the types of surfacematerialwithin a given
pixe1. The less mixed the pixel,the greaterthe potentialof extracting
useful spectralinformation. The increasedspectralresolutionis allowing
geologiststo map alteredzones associatedwlth mineralizationbased not only
on iron oxides, but on the basis of recognizingrocks and soils rich in
hydroxylgroups,such as many of the clays formedas a productof the minerali-
zation process.

The increasedspectralsensitivityalso promisesthe abilityto detect some
types of vegetationchangesthat are associatedwith anomalousmineralization.
This will be partlcularlyhelpfulwhere soiland plantsobscurethe bedrock.
This capabilityis not definitelyproven,but it Is theoreticallypossible
and highly anticipated.

In addition to plate tectonics,there is a secondrevolutiongoing on in the
geologicthinkingof petroleumexploration. The old paradigmof tightly
sealedhydrocarbontraps which retain for long periodsof tlme petroleumthat
was generatedand migrated in the distantpast is givingway to a newly
evolving paradigmwhich envisionsa much more dynamicscenarioin which most,
if not a11, traps leak, and the generationand migrationof hydrocarbonsis a
continuingprocess. This impliesthat there is very little,if any, really
old oil or gas, rather,only new hydrocarbonsgeneratedfromold rocks or
retained in old traps. The hydrocarbonleaked fromthese imperfecttraps
moves verticallythroughthe overlyingrocks to the surfaceand, in the
course of its movement,producesa host of chemicalchanges. The near surface
environmentmanifeststhis leakagein a varietyof geochemical,biological,
geobotanical,or geomorphologicalanomaliesand by the simplepresenceof
hydrocarbonitself.

This new paradigmalso has importantsignificanceto the mineralexplorationlsts.
The chemicalenvironmentcreatedby leakinghydrocarbonhas caused the emplace-
ment of a vast amount of lead, zinc, uranium,and silverand has potentlally

... played a role in localizingsome depositsof gold, copper,and barite.

In the remainderof the talk, I would llke to give you an appreciationof a
few of the ways that the increasedspectraland spatialresolutionof the
ThematicMapper will affect geologicexploratlon. First, the increased
spatialresolution. It is clear to us that, with carefulcomputerand photo-
graphicprocessing,the qualityof the TM digitaldata enablessharp photo-
graphicenlargementsto a scale of 1:50,000and, in some cases, larger. With
clearlyinterpretableimageryat these scales,explorationgeologistsare
able to slgniffcantlyrefine their structuralinterpretationscomparedto
those made from 80 metre resolutionNSS imagery.
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r' What was detectablennly a_ a lln_amentan MSS imagerymight be
." able to be confidentlymapped as a fault.
"_ ° More importantly,some of the.smallerfeaturesthat indicata
" dlrectiQnof movementalong Fault_will be identifiablein the TM
- imaqery,where they are.lost 'in th_ Inwer resolutionMSS imagery.

• SnuthernOntario CE_xa_m_p]9_

: T,lereare relativelyfew TM scenes avai]ableof _reas with strongoil and gas
_I interests,however,the July 25 imageof Detroitdoes includesome of the oil
:: and gas fieldsof southernOntario,Canada.

..; ThematicMapper False Color Compositeof SouthernOntario

On the false color image of the Ontarioarea, we have delineatedsome of the
.;. more prominentlinearsalong with the locationof the Malden,Colchesterand

Leamingtonoil and gas fields. At the Malden and Colchesterfields,the
-;,;_ hydrocarbonaccumulationsare in fractured,dolomltized,Ordovicianlimestones.

..}_ The fracturestrend WNW. It's a safe bet that the lineamentmarked on the
imageryis the surfaceexpressionof a major through-goingstructurewhich is

L'i controllingthe subsurfacefracturing.

.{i The Leamingtonfield is a littleyoungerand is locatedin ancientreef
deposits. Reefs are known to prefer the high edge of structuralblocks. The

_.:_ intersectinglineamentsmapped on the imagerymay well define two intersecting
-" _, normal fault;zones responsiblefor the upliftof a block edge and the locali-
...._'. zationof the Silurianreef.

"'-. .Cement_Oklahoma(Example)

_:. The most exciting potentialcontributlionof the TM data is the availability
of seven carefullyplacedspectralbands. For oil and gas explorati¢n,these

- spectralbands will be extremelyuseful for the detectionof possiblesurface
• rock alterationand geobotanicalanomaliesassociatedwith microseepageof
_ hydrocarbonsfrom buried oil and gas accumulations. As the leakinghydro-

carbonsfind their way to the surface,they alter the chemistryof the rocks
throughwhich they pass. At the surface,severalthingscan occur."the

_ alteredsurfacechemistrymay change the spectraland erosionalcharacteristics
of the surfacerocks and soils and/or it may createvariationsin the density,

_; type or vigor of any vegetationgrowingin the alteredsoils.

As a portionof our TM investigations,we are assessingTM's abilitytc
identifyand delineateareas of surfacealterationdue to microseepageof
hydrocarbonsat the Cement oil and gas field. The Cement field is overlain
on the surfaceby the Rush SpringsSandstone. The Rush SpringsSandstoneis
a characteristicred color due to an abundanceof ferriciron-oxides. The

reducingchemicalenvironmentassociatedwith the hydrocarbonmicroseepage
L appearsto have alteredthe insolubleferric iron to solubleferrousiron,

allowing it to be leachedout of the sandstone. The result is a bleachingof
the sandstoneoverlyingthe oil and gas field. We have only recentlyreceived', }

_. our TM coverageof the Cement area. Our spectralanalysesare thereforein
:= their earlieststages These next few imagesare picturesof our interactive
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image prac_sslngsystemand d_mQnstrateour first cut approachat delln_atlnq
the bleachedar_a assaciatedwlth the Cement field.

The iron oxide rich ar_as arffd_llneat_don the imageryas areas _f orang_ to
red co]or. Tho quarter frame image shows th_ locationof the rnd coloration
followln_c]o_ely the outcropof the Rush Sprln_sSandstone. However,the
area overlyingthe CemMnt oil and ga_ field is one of those areas wl_erethe
Rush Springsappearsto have lost its strong iron oxide signature.

DEATH VALLEY,CALIFORNIA(EXAMPLE)

The first placu to assess potentialof TM data to map differentrock types is
in an area of low vegetationdensityand diverserock types. Within the
presentrange of the TH system there is clearlyno more vegetationfree area
than Death Valley,California.

(DeathValley NCC/DeathValleyFCC.)- (Eiqun/HSV)

The followlngimageryare of an approximatelyI/3 TM scene area of the Death
Valley,Californiaoverpasson 17 November,1982. The scene includesa
naturalcolor, false color,eigen and HSV image.

The Hue, Saturationand Value (HSV)image is one of the more excitingimages
for geologicapplications. Throughthe use of two ratiosas hue and.saturation,
and the first eigenbandas the value, the resultingHSV image possessesthe
spectralinformationof a ratio image and the spatialintegrityof the first
eigenband.

The hue of the image is controlled by the ratio of TM5 (1.6 microns)over TM2
(0.56microns). The _olor assignmentsare such that high ratio valuesare
red with decreasingvalues passingthroughthe spectrumendingwith the
lowes_ values in blue. The saturationof the image is controlledby the
ratio of TM5 (1.6microns)over TM7 (2.2microns).

TM2 was chosen for its sensitivityto ferriciron oxides;TM7 for its sensi-
tivity to hydroxylbands and TM5 for its high varianceand broad information
content. The 5/2 ratio will have high value (redhue) over areas of high
ferric iron content,vegetation,as well as an assortmentof other surface
materials. The 5/7 ratio wli] have particularlyhlgh values (high saturation
on the uL_tputimage)over areas which containhydroxylbearingmineralsor
surfacematerlalscontainingfreewater (e.9.,clays,hydratedsalts and
vegetation). The first elgenbandrepresentsa positivelyweighted sum of the
seven TM bands and thus providesexcellent9eomorphologicinformationallowing

of the image s spectralinformation.for precisegeographiclocations

We suggestcomparisonof this image with the 1:250,000scale Death Valley
sheet of the GeologicMap seriesof Califorhia. Throughcomparisonwith the
geologicmap, some interestingexamplesof the unique informationcontentof
the HSV imageappear along the northeasternflank of the PanamlntMountains,
the easternFuneralMountainsand the northernportionsof the RestingSpring
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i:_ Mountains. The lower Paleozolc marine section along the northeastern flank
)._- of the Panamints is clearly dtstingul._hed from the oldar (PC?) section to the
' :_''.:1 west The smalloutcrops of Tertiary volcanlcs overlying the Paleozolc
::,_ii:i section are also clearly distinguishable. Note, however, that the PaleozQtc

_. marine section to the north (Tucki Mountain area) is spectrally "confused"
_ r ' ';-- with theTertiaryvolcanics•TheTuckisectionIs distinctlydifferentfrom
_:: the Paleozoicsedimentsto the southof BlackWaterWash,however,It is not

immediatelyclearwhy its5/2ratioshouldbe so spectrallysimilarto that
- of theTertiaryvolcanlcs.Alongtheeasternportionsof the FuneralHountains
_I',Y. a,d theRestingSpringRaage,thereare severalexamplesof stratigraphlc
i .. hori:onswhichare clearlymappableon theHSV imageryand havebeengrouped
E_ intotheCambrianmarineuniton the1:250,000scalegeologlcmap• Althoughi >"

:... such groupingsare obviouslynecessaryduringgeologicmapping,theability
to map the individual11thologicbedson theHSV imagerysignlflcantlyaugments

!_ the information available on the geologtc maps.

SUMMARY

_:): We in the exploration industry find ourselves in a very challenging situation.
...._ Worldconsumptionof energyandmineralcommoditiesis everincreasing,while
:: at thesametime,we areat a pointwheremostof the largeeasy-to-discover,
_'_'....... cheap-to-produce petroleum accumulationsand mineral deposits havebeen
;_:_ located and manyof these already exploited and depleted•

_.i;i However,on the brightside,our technologyis continuingto developnew
• toolswithwhichgeologlcexplorationlstscanevolveand testnew geologict

_/:_L concepts. These newconceptsallow the geologist to view exploration challenges
_.- with a new set of glasses,leadlngto suchdiscoveriesas findingell in
)_i_:; fractured volcantc rocks in the Great Basin of Nevadaand to the thought of
i--;,_:_,, drilling through igneous andmetamorphicrocks to find underlying oil in the
- _)_,. Appal achtan Mountatns•
!- _.,_

;_.... The improvementsof Thematic Mapperdata over multtspectral scannerdata
);: bringsus to the pointthatwe are ableto exploitsatelliteimageryat about
!_;" the samescalethatwe haveusedaircraftdata in the past. Certainly,
)!_i- improved spatial and spectral resolution andwider spectral coveragewould be
i welcomedand stereoscopicimagerywillbe a greatboon• However,it appears
i_-"_i_ to us that the present TMsystemoffers a near optimumbalance betweenre-
!_,i, solution requirements and data handltng capabilities.

_;'_ In summary,we feelconfidentthatspecially enhancedThematicMapperimagery
!_. willmakea verysignificantcontributionto the elland gasand mineral

explorationindustries TheTM'sincreasedspatialresolutionwillenable
; the productionof largerscaleimagery,whichwlllgreatlyincreasethe

_ amountof geomorphlcand structuralinformationinterpretable.TM'sgreater
_: spectralresolution,combinedwiththe smaller,more homogeneouspixels,

shouldenablea fargreaterconfidenceIn mappingllthologlesand detecting
geobotanlcalanomaliesfromspace. The resultsfromitsapplicationsto

•'_ hydrocarbonand mineralexplorationpromiseto bringthemajorityof the
,_ _ geologicexplorationcommunityintothatflnalstageof acceptanceandrou-
":_ tineapplicationof the satellitedata.

,¢

'l
i.
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Table 1

COMPARISONOF LANDSAT-I, -2, -3 AND -4 MULTISPECTRAL
SCANNERCHARACTERISTICSWITIITHOSEOF LANDSAT-4THEMATICMAPPER

MSS TM

Resolution: _,80m n,30m

.._ WavelengthBands:

.... 4 = 500- 600nm 1 - 450- 520nm
5 = 600 - 700nm 2 = 520 - 600nm
6 = 700- 800nm 3 = 630 - 690nm
7 = 800 - 11OOnm 4 = 760 - 90Onto

B= 1550- 1750nm
6 = 10400- 12500nm
7 - 2080 - 2080nm
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GEOLOGIC UTILITY OF LANDSAT-4 TM DATA ]

/
t

Michael Abrams, Anne Kahle, Alan Gillesple,

James Conel, Harold tang

Jet Propulsion Laboratory
Pasadena, CA 91109

INTRODUCTION

:" 'me present LIDQA study is being conducted in several phases to quantify the

: performance of the qlqvis-a-vis various geological applications. These phases

include: (I) analyses of the geological utility of the data with respect to
-_ the increased spatial resolution and number of bands (compared to the MSS);

(2) analysis of geometric accuracy; (3) analysis of radiometric performance of
" ' the TM scanner.

Preliminary analyses have been performed on two TM scenes: Z-40124-17495 over
Death Valley, California, and E-40128-17263 over southern Arizona. Both scenes

were acquired in CCT-PT forint, where the data were geometrically and radio-

metrically corrected. Overall, the TN data appeared to contain a marked

increase in geologically useful information; however, a number of instrumental

or processing artifacts may well limit the ability of the geologist to fully
extract this information.

DEATH VALLEY SCENE

[n order to examine the utility of the TM data at full usable spatial
resolution, several small areas were extracted from the TH scene for further

image processing. A 27 by 18 km area was examined covering the east side of

the Panamlnt Hountalns, alluvialfans descendin 8 to the valley floor, part of

the Death Valley salt pan, and Trail Canyon. rata were processed using band
ratlolng, color-enhanced band composites, and principal components transfor-

mations. Lithologlc interpretation maps were prepared and compared to published

geologic maps of the area. More detail and delineation of alluvial fan units
were evident on the TM scene. ReLative ages of the fans could he inferred

based on geomorphtc appearance. _e oldest fans had dendritic drainage patterns

developed on their surfaces, white younger fans were characterized by the
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_. presence of parallel to hratded drainage patterns, _he 28.5 m ptxel size was
more than sufficient to resolve these drainage features Spectral contrast

: i_ between fans was related to differences in source rock composition and variable
_i t development of weathering and varnish surfaces. In combination with the spatial

., _ details, all mapped fan tmits were separable, and additional separations based
:' on spectral differences could be made, Of the three different enhancement

procedures used, ratioing produced the least useful images due to exaggeration
_ _', of noise and artifacts (discussed later),

i '"

i-:."" A second area, 15 by 15 km over the Tucki Mountalns at the northwest end of

! _ Death Valley, was extracted from the _d scene to examine the utility of the

:::_ data for separating sedimentary rock types, _he Tuckl Mountains have exposed
,:.. ,., quartzites, shales, dolomites, limestones, and sandstones, The beds dip 50°-

i 90 ° , and topographic relief is rather severe, However, exposures are excellent
• as vegetation cover is minimal to absent, Again the principal components

_. co.mposltes and enhanced-band composites were the most satisfactory [or display

I _. of the data, Many of the mapped rock types were separable based on spectral

i _:- differences, Problems occurred along north-facing slopes due to deep shadows

i .i. resulting from the low sun angle (27°) during the November da_ acquisition; no
,-_ llthologic information was discernible in these shadowed areas.

i_o: The same two areas were extracted from Landsat-2 MSS data for comparison to the

'_.'_'::_ TM data. _e improvement in spatial resolution of the TM was patently apparent,
!_'_-. No details of the drainage patterns on the fans were discernible on the MSS

_. data, making interpretation of geomorphic information impossible, In addition,
i o:_ the limited spectral band coverage reduced the amount of lithologic _eparations
_ displayed on the images.

io'_,_- A larger area (60 by 40 km) was processed to examine the effects of u¢ing
I_ 2:,

_. different spectral channels in false color composites, _e data were processed
'-'_" using decorrelatlon stretching (Soha and Schwartz, 1978) and combined in various
i-'_,, triplets to produce a color composite (described in a later section), The most

_. useful combination examined was created using bands 4, 5, and 7--the three

.S'=. infrared bands, This is not surprising, as the major spectral contrast between

_ different rock types occurs in the infrared part of the spectrum, _is points
- out one of the main advantages of the TM over MSS data--the..px.e.seaee--ofchannels

.- beyond l,O _m. . ........

, We have digitally registered the TM data to a topographic map base, then

!"-_ registered Seasat radar data and six channels of thermal multispectral aircraft

_ data (8.2-12.2 um range) to this data base, _he objective is to assess the
_:_ improvement in material separation possible using this multivarlable data set.

.......? Each data set measures a different surface physical property--the _ is
i--L. sensitive to reflectance characteristics which are mainly controlled by the
_" presence of iron, water, hydroxyl ion, and carbonate ion, and overall brightness

or albedo; the thermal data are sensitive to the presence of free silica,

i :' hydroxyl ion, density, albedo, conductivity, and dif_uslvlty; the Seasat data
are sensitive to surface roughness, orientation, and moisture content,

A principal components trans_or_tton was applied using 13 input variables:

' .. six TM bands excluding thermal, six thermal multispectral scanner bands, and

.. one Seasat channel. ¢_mposltes were created using various triplets of thc_

.I eigenptctures, and two were selected for separation of fan units and rock units,

..'i

l
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Both composites had more lnfor_tton displayed using, the combined data set than
was apparent tn images created from any of the data sets alone. Further

processing and analysis of these data will continue to assess the contribution
of the data types for separating various types of materials.

SILVER BELL AREA

' A 30 by 45 km area was extracted from the south;rn Arizona TM scene over tile

Silver Bell porphyry copper deposit. This area was intensively studied in

tile past during the Joint NASA/Geosat test case project (Abrams et el., 1983).
A number of extrusive and intrusive rocks are exposed, in addition to llme-

stone and alluvium. A major hydrothermal alteration event produced a varied
assemblage of minerals related to hydrothermal activities and deposited copper
and molybdenum. These minerals have spectral characteristics which occur In

the 0.4 to 2.5 _m wavelength region, and were detectable using Thematic Mapper
Aircraft Simulator data.

A number of processing techniques were applied to the TM data_,-the most

satisfactory (least objectionable noise) was decorrelatlon stretching. Color
composites produced using visible and infrared channels reproduced the alter-

ation separation derived from the aircraft data. This confirmed the earlier

predictions that tLe TM data, at a resolution of 30 m, would be useful for

detecting mineralogical features associated with this type of ore deposit.

PROCESSING TECHNIQUES AND NOISE

Band rattoing, a technique which has produced satisfactory results with the

MSS data, suffers from a severe noise problem using the TM data. Specifically,
the ractotng process exaggerates the presence of striping in the TM data.

This striping is apparent in the individual TM channels; it has a 17 llne
periodicity, and in some bands consists of a pair of bad data lines, with the

appearance of salt-and-pepper noise. The bad lines occur at the joins between
the forward and reverse scan directions. The cause of the 17 line periodicity

may be a result of the geometric resampling performed on _'hedata to produce

28.5 m ptxels from 30 m data. Notice that the ratio 28.5/30 = .950, and
16/17 -- .941. This suggests that the interpolation algorithm used to produce

the added lines of data is functioning Improperly. Also, the bad lines occur
where differences In the radiometry between the forward and re,,erse scans would

be most apparent--at the Join between them. This type of noise--coherent,
along-flue strlplng--can be readily removed using the following procedure:

I) The average of each line is computed and retained as a one-column
Image = A;

2) This image is low-pass filtered with an equal weight filter = B;

3) The one-column difference picture (A-B) Is talc,dated, and then

e×panded to tile full plcture dimensions. _lat Is, a picture with the same

number of columns as the original Is created, with each of its columns being
Ide,lt[ca] wlth (A-B);
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,: 4) _he above pit-.r..re Is suhtractod from the origtnal to produce the and
result, an llrlage without ;_trtptng.

' Principal components analys_s applied to the 6 visible and near-infrared

-: channels produced elgenptctures with the striping distributed in the last three

! components (the fourth, fifth, and sixth). A composite using tl_e first three

1_i components was devoid of striping; however, the last three contained meaningful

r_ infor1_ation. Composites made with any of these added striping into the color

compos ire.

! ...... The most generally useful display technique, which enhanced the information

content without exaggerating the striping, is a procedure called decorrelatlon

stretch. Xhe six TM channels were input to a principal components trans_orma-

tlon; the data were stretched to equalize the variance between components;

_ the inverse rotation was performed, which rotated the data back to the original

coordlante space. The effect of this procedure is to greatly exaggerate

saturation and intensity variations, while preserving the hue content. Any
i triplet combination of enhanced channels can then be used to produce a false _

i "_;"_ color composite, ii!

°'T !

_'_" i
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AN INITIALANALYSISOF LANDSAT-4THEMATICMAPPER DATAFOR THE ly
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Dale A. Quattrocht
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Nattonal Space Technology Laboratories
Earth Resources Laboratory

NSTL Station,Mississippi39529

INTRODUCTION

This paper describesthe results of initialwork at the NASA, National
Space Technology Laboratories, Earth Resources Laboratory (ERL) on
evaluating Landsat-4Thematic Mapper (TM) data for the delineationand
classificationof agricultural,forested wetland, and urban land covers.

The paper'scontentshave been digestedfrom an ERL report whichldetails
the methodologiesemployedto achieve the resultsoutlinedbelow. All TM
data have been extractedfrom scene ID #40037-16031which was collectedon
August 22, 1982 and encompassesportionsof Tennessee,Kentucky,Arkansas,
and Missouri. There are three sectionsto the discussionpresentedhere -
one for each of the specific land cover investigations. In the first
sectiona co_parlsonis made betweena classlficatlonderivedfrom Landsat
Multlspectral_Scanner(MSS) data for agriculturalland covers in Poinsett
County, Arkansas,wlth a TM classlflcationof the same area. The next
sectionof the paper describesthe applicationof TH data for dellneating
forested wetland species within Reelfoot Lake located in northwestern
Tennessee. Lastly,the abilltyof the TM to discriminateurban featuresis
addressedusing Union City, Tennesseeas a study area.

COMPARATIVEEVALUATIONOF MSS AND TM DATA
FOR CLASSIFICATIONOF THE AGRICULTURALSTUDYAREA

This investigation had as tts purpose: (1) to examine the potential of
Landsat-4 TM data for providing information on agricultural land covers;
and (2) to compare the general capabilities of Landsat TM and MSSdata for
crop mensuration and mapping. The Powers Slough and Otwell 7-1/2' topo-
graphic quadrangles located tn Poinsett County, Arkansas tn the north-
eastern part of the state have been used as a study area for analysts
(Figure 1). The primary crops produced tn Poinsett County include cotton,
rice, soybeans, wheat, and to a lesser degree, grain sorghumand hay.

MSS DataProcessin_Procedureand ClassificationEvaluation:

MultldateMSS data of the study area were obtainedfor three periodsduring
the growing season: (I) for pre-plantingconditions and winter wheat
mapping (February26, 1981); (2) for mldseasonvigor (July 20, 1981);and
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for senescence (September 30, 1901)o These data were used to gtve the
broadest possible range of spectral values for the target land cover types.
In preparation for data processing, the multttemporal data were registered
to a base data set; the February scenewas used as the base wtth the other
data sets overlayed or reotstered with these data° After registration,
channels 2 and 4 were oxtracted from the overlayed data and used to create
a six-channel data set for analysts.

Data processing was accomplishedusing an unsupervised signature develop-
ment algorithm which passes a 3 x 3 ptxel "window" through the data to
derive spectral statistics. For the 75,053 acres (30,386 ha) within the ........................
study area, 30 spectral signatures were obtained. These _pectral statis-
tics were then classified using 9ausstan maximumlikelihood techniques;
subsequently, stx spectf!c land cover types were identified from thts
classification process (Figure 2). Each class was then evaluated _n
relatton to ground verification information to determine classification
accuracy. These accuracies have been ltsted in Table 1. The highest
percentages of classification accuracies were recorded for the hardwood,
rice, and soybeancategories with percentages of 100, 98.74, and 89.69,
respectively. Low accuracies were recorded for double-croppedareas of
winter wheat and soybeans (18.63%) and water (22.81%}. Seventy-three
percent of the double-cropped areas of winter wheat and soybeanswere
classified a_ soybeans. The relatively smaller fields of winter wheat in
the study area dtd not contribute a significantly large numberof ptxels
for signature development, which resulted tn reduced accuracies. Also,
impoundmentswithin the study area are normally smaller than 10 acres and
are usually bordered by harc_oods. This makesdiscrimination of water
bodies difficult andcontributes to the low accuracies ltsted tn the table.

TA|LIt 11 ACCt_IIACYOr CI._SSZFZCATIONPO# _,$ DATA* POtl4Srt? COUtttPY,
ARKANSASSTUDYARItA

I.UIB COVItKC&TECORItS

HAPPINCACCtnIACY

WIM_Pltl 140. Or
ItAa(_O00 RtCI SO.r_'_S _tl VA+[D +IXZI.S

SOY,EAlll

I | 3 4 S

t 307 0 0 0 0 301

_OO,O0 0,00 0,00 0,00 0,00

2 0 21St 21 0 0 ||L9 j!o.oo to.?+ 1.26 o,oo o.oo

3 o t*_ 12s+ o o t**s
0,00 |0.31 11.69 0._ 0,00

l 0 41 33t 11 0 4ti

0.00 i,18 1|,59 1i,6$ 0.00
$ 44 0 0 0 IJ S?

1T,lt 0.00 0,00 0,00 l|,lt

PItCI_]P CO,JttCT OWIIAI.I. 80.91

i Pl,fdu_d IO0.OC
| lliee $8,14b
$ Soybesnl It,it
4 WInIIIP lil_lll#llllyllllN If*l|
I Valet' IS,It
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: Althougha fallowcatogoryhas been definedin Figure 2. no graundwrlfl-
cation sites were s_lect_dfor thls class. Field conditionswithin the
study area precludoddelineationof verificationsites; thus, the class
could be identified,b,t no accuracy statisticshave b_en prod,c_d for
inclusionIn Tabl_ I,

TM DataPrecessi_and ClassificationEvaluation:

TM data from the August 22, 1982 data used In the investigation wer'e
=, subjectedto the same automatedsignature developmentprocedureused to
:', derivespectralstatisticsfrom the MSS data. This processresultedIn 43

spectralsignaturesutilizingTM channels2, 4, and 5 as input data. All
groundverificationsites establishedfor the MSS evaluationwere revisited
hiE--August1982 and were used to: (I) establishthe relationshipof spec-
tral signatureswlth specific land covers; and (2) develop estimatesof
accuracy. Becauseof crop rotationpractices,land uses In the study area
had changedin the interveningone year tlme periodbetweenMSS and TM data
acquisition. The distributionof land cover types for TM analysis,there-
fore, was not identicalto that found In the MSS evaluation. Consequently,

i the 43 spectralsignaturesdevelopedfrom the datawere classifiedinto the
flve land cover categoriesshown in Figure 3. These classeswere subse-
quently assessed for accuracy In relatlon to ground verificationinfor-
mation,wlth the resultslistedIn Table 2.

TABLE 21 AcctrAAcY OF C_ES$1PICATtON FOR TH DATA - POI_$ETT COUNTY. ARICANSA$
STUDY AREA

LAND COVER CATECORIES

HAPPING ACCUR_C_

_,'CLASSI- _0,
_lOO_ Y^LtOl* _tcE SO,DEANS WAT_ rl£D PIX_LS

l 2 3 _ 5

_ 1% 0 0 0 0 0 19_

100.00 o.oo o.00 o.o0 o,0o
o.oo

0,00 92.3b 0.00 0.62 0,00 G,_]

_ 9 0 k?8_ l# 0 1 4811
_ 0,19 0,00 99,d2 0,37 0,O0 .02

* A_ 0 212 &672 0 i 41)0
O,_t 0,(10 _,30 4,77 0,00 ,02

5 0 0 0 0 03 0 8Z
O,O0 0,00 0,00 0,00 tOO,nO O,O0

Percent Correct Overall _I,0_
CLA% tCOSS£CT

I, _rdunod |00,00
2. Fallou 92,53

4. S_yhu_o| 9_.17
_, Va¢_ tOO,CO
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Comparisonof MSS and TM ClassificationResults:

,_ The accuracies listed in Tables I and 2 have been u_ed to compare the
performance of the MSSversu_ the TMwithin the Polnsett County _tudy area.
Results from a Newman-Keuls test of comparative accuracies based on the

.. arc_Ine _/-_'tranformatlon at the -.0_ significance level, 111ustrate the
• following: (I) the TM did significantly better than the MSSin an accuracy

assessment of the water class; (2) the MSS and TM performed equally well
•_ (i.e.,no statisticalsignflcantdifferenceIn accuracies)in the soybeansi =

rice, and hardwoodcategories;(3) and most importantly,the TM performed
: significantlybetter in an overall comparisonof accuracies. (Unlikein
. the MSS evaluation,however,an accuracyassessmentfor a fallow/baresoll

category was derived for the TM data because land uses within the study
area alloweddelineationof ground verificationsites).

:_ EVALUATIONOF 114DATAFOR CLASSIFICATIONOF FORESTEDWETLANDS
IN THE REELFOOTLAKE AREA OF NORTHWESTERNTENNESSEE

I

. : The goal of this investigationwas to analyzeLandsat-4TM data collected
_, on August 22, 1982 for the discrimination and inventory of forested
_ii wetlands in the vicinity of Reelfoot Lake, Tennessee. Because of its

i_'i uniqueaquaticecologythe ReelfootLake area offers an unusualopportunity
., to test the capabllltiesof the TM for delineatingspecificbiomeswithin" i

" ii the freshwaterwetland regime. The lake is situatedwithinthe Mississippi
River floodpTaln of western Tennessee and contains approximately8,117

• ! acres (3,245 ha) of wetlands (Figure 4). These wetlands are comprised
_i mainly of cypress mixed with other hardwoods,exposed mudflats vegetated

with aquatic grasses and shrubs, and shallow water with emergent and
floatingaquaticplants.

: TM DataProcessingand ClassificationEvaluation:

To focus attentionon areaswhere wetlandheterogeneitywas most prominent,
a polygonwas delineatedaround the lake and only data which fell wlthln
this polygon were actuallyprocessedfor the study. Preliminaryevaluation
of the data for the ReelfootLake area, based on the analysisof spectral
scattergramsfor selectedground truth plots, indicatedthat 114channels1
(.45-.B2_m) and 6 (10.40-12.50_m) did not contrlbut_a significantamount
of informationwhich could be used to spectrallyseparatewetlandclasses.
Consequently,these channels were eliminated from considerationand data
analysiswas restrictedto channels2, 3, 4, B, and 7.

Spectralsignatureswere derivedfor the study area utilizingthe unsuper-
vised 3 x 3 pfxel sltdtng window approach, and also on a ptxel-by-ptxel
basis; this latter process was employed to separate those signatures that
were spectrally distinct, but could not be spectrally separated using the 3
x 3 ptxel sliding window. Sixty spectral statistics were produced by these
algorithms and they were then classified using gausstan maximuml|kelthood
techniques. The 60 classes were ultimately grouped into five primary cover

,_ types: cypress; mixed hardwoods; willow and cypress; brush, grasses, and
emergents; and floating aquatic vegetation. For display purposes, the five
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primary cover types were further refined into tile nine specific classes
illustrated in Figure 5. This nine-category classification was not used to

•; assess the accuracy of the TM data because ground truth sites could not
• adequately be defined within some of the classes; i.e., the nine classes in

Figure 5 were interpreted from the data, but sites with areal extents large
: enough for ground truthing could not be deflned.

Independent of the class naming procedure, ground verification samples were
_ established for use in determining associated accuracy estimates for each

of the five primary cover types. These verification samples were identi-
fied using ground observation information, U.S. Fish and Wildlife Service

; timber stand maps of the Reelfoot Lake area, and recently acquired aerial
photographs. Table 3 summarizes the results generated from accuracy

;; assessments of the data, predicated on an evaluation of the TM-derlved
; classification against known cover types within the ground verification
;-_ samples.

: T,%IILE3" SL_.CIARYOF "PERCENT CORRECT" ACCURACY VALUES ASSOCIATED WITl|THE FIVE
-_tND COPER TYPES OF INTEREST - RE.ELFOOTLAKE STUDY AREA

,j ,....

Lt%rOSAT-4TM CLASSIFICATION LLND COVER CLASS

HIXED WILLOW BRUSH, FLOATING L._ICLASSI-
CYPRESS HARDWOOD CYPRESS Clb%SS, AQUATICS FlED

EMERGENTS
, , , ,,, ,..... ,,

cY_ss 9s.?s o.s_ o.o o.o 0.42 o.oo

._LL_ED
1L_RD','OOD 5.75 94.25 0.00 O.O 0.0 0.00

e.j

WILLO;# ?.07 O.O 91.92 0.0 0.0 1.01

,,j

L:' BRUSlI, 2.38 1. ?9 0.0 93.45 2.38 O.OO
_. CRASS,

I_(ERGENTS

FLOATI'CG
AQUATICS 0,0 O.O 0.0 0,0 97,20 2,80

O%rEP_%LL
PI_RCENT 95.36
CORRECT

.i
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.... It appears from the high percentagesof correctclassificationlisted in
Table 3,,that the signaturesdevelopedusing ll_channels2, 3, 4, 5, and 7
reclsely defined the five wetland land covers. A)so, whore confusion
i.e., mlsclasslflcatlon)existed, it could logicallybe explained. For

example,the willow/cypressclass have been confusedonly with land covers
i classified as cypress; thts sort of mtsclasstftcatton ts plausible because
f of the extreme heterogeneity of land covers within the study area.

EVALUATIONOF TM DATAFORCLASSIFICATIOHOF A SMALLURBANAREA
IN NORTHWESTERNTENNESSEE

i

The last segment of this paper deals with the evaluation of Landsat-4 TH
data for analysis of a small urban area in northwestern Tennessee. With
Its improved spatial and spectra_ resolution over what has previously been
afforded by the Landsat MSS, tt is anticipated that the TMwill provide new
and better information for discriminating urban features. Several
researchershave used ThematicMapper Simulator (TMS) data to assess thg
capabilitiesof these data for delineatingand mappingurban areas. Toll_ ,.
comparedTMS data acquiredfrom the NS-O01airbornescannercollectedover
the Denver,Coloradometropolitanarea wlth LandsatMSS data. His research

TC indicated that the TMS data provided additionalurban land cover mapping
_- capabilitiesparticularlyat the urban/ruralfringe In comparisonto the
.... type of information.thatco_uldbe derivedfrom MSS data over the same study
i.' area. Ranga_wamyand Lien utilized NS-O01 data for a suburbanarea near
: Washington, DjC. to simulate and assess the TM's spatial, spectral, and

radtometrtc characteristics. Their results showed that data from the TH
would give acceptable classification accuracies for hydrologic applications
where41and covers were an important component in the overall landscape.
Clark employed data from selected channels of a 24-channel afrborne MSS

_ acquired over a portion of Los Angeles, California to simulate three
channels (green,red, and infraredwavelengths)of the Landsat4 TM. One
of Clark'smain goals was to vary the spatialresolutionof the 24-channel
scannerdata and assess the resultingclassificationsobtainedFor the Los
Angeles test site. From hls results,he concludedthat a spatial reso-
lution of approximately30 meters would be best for multispectralclassi-
ficationof urban scenes.

Given the potentialvalue of TM data for urban analysisas demonstratedby
work with simulateddata, an initial evaluationof Landsat-4TM data has
been conductedfor a small city in westernTennessee. Union City, located
In the extreme northwesternportion of the state, was chosen as a study
area (Figure 6). The clty has a population of approximtely 14,650
accordingto the preliminaryestimates from the 1980 census. It is the

• major commercial center of northwesternTennessee and has about eight
square miles (20.Tkm) within its city limits. The land surrounding the
town ts predominantly agricultural, with soybeans, corn, wheat, and small
grainsthe principalcrops. Althoughthe clty Is in a rural area, it does
supporta numberof diverselight industries.
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A pJxel-by-ptxel automated signature development algorithm was used to
derive spectral signatures within a polygon defined from the August 22,
1982 TH data used tn the study. Thts polygon was selected to encompassthe
majority of the Union Ctty urban area. An analysts of the seven-channel TH
data, predicated on the evaluation of spectral scattergrams for selected
ground truth plots, indicated that channel 1 (;45_m to .52Mm) dtd not
contribute a significant amount of information which could be used to
separate urban signatures. Thirty-nine spectral signatures were derived
from the unsupervised signature development procedure utilizing the stx
channels of data as input.

These spectral responses were then classified vta the gausstan maximum
likelihood technique. Ultimately, the classes were grouped utilizing
ground truth and ancillary data tnto stx specific land cover categories:
(1) roads and inert materials; (2) commerfcal and Industrial development;
(3) residential development; (4) agriculture and bare soil; (5) transi-
tional or grassland areas; and (6) forested areas. Figure 7 represents the
classfftcatton of Union Ctty as delineated by the polygon that was used to
define the urban area for signature development purposes.

:i Accuracieswere computedfor the classlflcatlonbased on the evaluatlonof
: 45 ground verification polygons wtth known land covers selected from the
; data. Because of the dffftculty tn defining precise ground truth polygons

for the transitional/grassland and roads/Inert materials classes, polygons
for these categories were combined wtth the agrfculture/bare sot1,

_" commerctal/t_dustrlal, or residential categories. Table 4 gives the
accuracies for the resulting four major land cover types used to estimate
cl asstft carton accuracy.

TABLE4= COHPUTEDCLASSIFICATIOtlACCURACIES- UNIONCITY 5,UDY AREA

CLASSCATEGORY

(%CorrectbyClassandNo.of PtxelsClassifiedbyClass)

Agriculture Commercial Residential Forest TotalNo.'ofGroundTruth
PtxelsUsed

Agriculture 89.97 8.37 1.66 0.00
1570 146 29 0 1745

Commercial .90 95.68 2.88 .54
5 532 15 3 556

¢.J

Residential 13.73 .49 83.50 2.29
198 7 1204 33 1442

= Forest 1.19 0,00 .15 98.66
8 0 I 662 671

Percent Overall Correct - 89.90_ TOTAL= 4"14
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The accuracy figures in the table indicate the al|l_njltl, of will, ill cla_s
c_ntus'ion that occurred for each of the fnur ground tluth catr;!]_Jries.
Fahl(} 4 shows that the agriculture/bare soil class had an ,Jccuracy nf
approximaLc'ly 90%, while the commercial/industrial cl,_ss pr.ducnd an
accur_cy of about 96% correct classification. Residential _Irc,as h,_d an
accuracy of F_3.50% The confusion of the residential class with ,_(irlc1!Iture
was predominantly due to the overlap of spectral sign,,tures wii,hil_ the
transition category. Newer residential areas have fewer trees !.han .Ider,
more established neighborhoods. These newer subdivisions app(_ar_:(l specl.-
rally similar to grassland or shrubland areas and were c()nfused with the
transition land component of the agriculture class. Forested areas
produced the best classification accuracy, with a percentage corl',,c:l: of
almost 99%. The overall accuracy for the four major classes as (;umpared to
the ground verification data totaled 89.90% correct.

Concurrent with the digital assessment of the TM data for classificatiun of
the Union City study area, a photolnterpretative analysis employing digital
enhancement techniques was also performed. This empirical analysis of the ,I
data was conducted to augment the results obtained through digital classi-
fication and to evaluate the photolnterpretatlve characteristics of the TM
data for urban feature discrimination. It was hypothesized that the TM's
improved spatial and spectral resolution over that offered by the MSS would
be more conducive for photolnterpretation of urban areas. In many situ-
ations, it may in fact be advantageous to bypass digital classification of
the data and employ photointerpretation methodologles to derive the
required information. This would be particularly true for areas where only
certain or specific land covers may need to be observed for changes in the
direction or intensity of urban growth patterns. It would be unnecessary
in most of these cases to apply gaussian maximum likelihood or similar
techniques for classifying the data; the desired information instead could
be obtained through photolnterpretation.

The three black and white products for the Union City area (Figures 8-10)
illustrate how the increased spatial and spectral characteristics of the TM
greatly augment the photointerpretative qualities of the data. To enhance
the spectral contrast within the urban area, principal components analysis
(PCA) was applied to the origlnal seven r.hannelsof TM data. In addition
to its data enhancement characteristics, PCA has been effectively used to
eliminate confusion between agricultural and residential signatures in MSS
data'.

The first princlpal component (PC1) has in the past been commonly _-c*Ferred
to as "brightness" because it emphasizes surface reflectance albedo; thus,
highly reflective materials such as those in the Central Business District
(CBD) and in other commercial areas appear as bright white tones (Figure
8). Note in Figure 8 that individual buildings are evident as exhibited by
the reflectances from the Starlte Company and Kinkead Industries locaLed
north of the Union City CBD. The Starite Company has a roof that is high
in reflectance (e.g., a roof comprised of very llght-colored grav,_l)while
the Kinkead Industries building has relatively low response from its black,
tar-coated roof.
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PC2 exhibitedsome pquallyInt_restin_phatolnterpretativecharacteristics.
_ This component has frequently be_n a11uded to as "greenness" since It

emphaslz(_svegetativecharacteristics,or In th_ ca_o of urban ar_a_,the
i absenceof vegetativeresponse(Figureg). Streetpatternscan be d_tectod

In this image becausethey have a low gr_ennes_refl_ctancein the second
component. As In PCI, the individualstructurescan also he discriminated
from PC 2.

To maximize the information content contained in PC's I and 2, these
transformeddata channelswere ratloed (Figure10). The ratioingof PC!
and PC2 has been shown to be useful for enhancingthe target-to-backgrom}d
contrast of f_atureswith heterogeneousland cover compositionssuch as
surfacemines . PC's I and 2 contain uncorrelateddata, wlth each com-
ponent contributinga significantamount of useful informationlratioing
these data, therefore,permitsoptimizationof data contentwhich leads to
an improvedoverall contrastlevel within the image. This is illustrated

In Figure I0, where the contrastbetween highly reflectivebuildingsand !more subduedurban components,such as streets or residentialareas, has
been increased by ratlolng PC's I and 2. Although both PCl and PC2 ii
enhancedculturalfeatureswithin the city, the ratloeddata augmentedthe
detailed discriminationof urban features, particularlyin the identi-
ficationof specificstructures.

From analysisof the classifiedand photolnterpretativeda_a products,It
is evidentthat the fM can providesignificantinformationfor detectionof
urban features. It Is enticingto see from this initialevaluationof the
data that discrete urban land covers can be discriminatedusing digital
techniqueswhile maintainingaccuraciesas high as those establishedIn
Table 4. More importantly,a town the size of Union City could barelybe
discriminatedthroughphotolnterpretatlon,let alone be digitallyclasslfed
as an urban area, from MSS data. Yet with the TM, It Is possible to
classify components of the city and visually locate and discriminate
individualbuildings. It definitelyappears, therefore,that the TM will
significantlyadvanceinterpretationof the urban milieu In comparisonto
what formerlycould be obtainedthroughevaluationof MSS data.

SUMMARYAND CONCLUSIONS

The investigations described tn this paper have explored the capabilities
of TM data for discriminating land covers within three particular cultural
and ecological realms. Although the _aork presented hero has been initial
tn scope, the results indicate how useful the Landsat 4 _ will be in
providing researchers wtth a new capability to monitor the Earth's environ-
ment and landscape. One scene of TM data collected on August 22, 1982 over
portions of Arkansas, Missouri, Tennessee, and Kentucky, has set the
background for the studies that have been outlined here.

The agricultural investigation tn Potnsett County Illustrated that 114data
can successfully be used to discriminate a variety of crop cover types
within the study area. Moreover, tn comparison with a classification
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I ...."d ,-.i dm"lw,d From a multitomporal PISSd;_.a s_t _f tho ._ame.arna tile slnfilo _ _._'
: IM (.la;,;_ificationprodNcod r_sillts that. we.r_ .siqniflcantlyhntter t._,q
- tho._o,d_tv_Inp_dfrolnthe,MSt__.

F,r t.h,R(_c,lfont l.akeatria,TM data proce.._edu_Inq un.supo.rvi,;e.d_lqn,_tur(_
". (t_w(;l(HJlilollt t_ctiniqul'._ I}rodt_ce,d a dotail_,d cl,l:v_;ftcat'l(m of f,_'rr'._t_d

w{_tland;; wil',h ,;xc(_llonl, accllracy. In fact, the. nirle._cat(!fl(}ry cla,_,,_i{_,_4_
: i'.|(_nq_,Iv;ral:e.dfInr l:ho,,;tudy,_Uqqe';t5that. 'iti,; p(_;:;ilfl{!to (;^l;_,;.:t ,,(,

much d,.t',ail withlt_ t,h. Wet'landr, that d(qlnoatt_m .f ar'(_ar, of Gl&f[i_iPnt,
' I ' _ 'iZ i) ['{)r II!;(. _ ill (IV'{IlUll(I l,yllthVl,_Y'iftcatIIll|} 'I_I_ditIt"icIlrl'L.

';-" II,al,;i,,qii.)_tr'; that th(,'IMis w_.ryw(;ll _;11'{Ir,(_'d t() (l(')'IV'IIl,_ I 'l,_9_,rlnatlnnnn
.. Sl)eclf'i_:,than land v_vi,r cla:',ses A_; 'Indle_te(ll)y the ,-va,l:_tion

pre,;m_l,t_,din the last .section of this paper, even in a sm,,}1 clt,v of
al)l,'(_xlmatp.l.yI_ ()(}f)pool)l_!,IM data can sm;cessful'lyhe used to _.m,,..=ra_',.,,v

"; distlH!Jui_h specific urban classes. Furthermore, tl_,principal ce_.r_,m,:r :s
';' an,_lysis(,valuationof the data shows tllal,through l)hotolnterpreta_)n_')(c

;_"ii';.. is l)us_ibleto dlstlrLguishindividual buildings and roof responses w_'_,th_

_. TM.

';. In c.ollclllsioll,the 'Investl,jatlonsdiscussed here haw_ explored tht:(qq",;,_1
N .(

;.. classification and enha_cement of TM data for three land cover a_.,,,."_.
'"" 't;ions. Al_lllough-_.hei_ offers a significant improvement in sp_',;-al
.:. resolution over what has previously l}eenavailable on the Landsat M_:._,,_.he
_ increased spatial resolution of the TM presents even more Intcro._t_n9

L.:. opportunities for research. Sluicethe TM is a new sen;or, it t_ _._:c_t-Cc
" : that further work be conducted to understand the spectral proper,.'_esand

7-iii. characteristics of the system, To fully exploit '_hec._pabi!_,tle_so_ ';,,,e
-";'-; TM, however, both the spectral and spatial attributes o_ 'thedata ,._!_." h_
,_ ua_ii;_ed, lhe ,lext step in the evaluation process, _hererore, _.h_,a}_
.". assess the interrelationships of these factors by employln_ new _t,e.,.t,.,al
'_-_ pattern recognition techniques along with spatial, te,tur,_,l,a;..icon,-;,,...

-,_ textural cl asslfiers.

i T.
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PRELIMINARY EVALUATION OF THEMATIC MAPPER IMAGE DATA QUALITY

R. B. MacDonald, F. G. Hall, D. E. Pitts, and R. M. Bizzell

NASA Johnson Space Center

Houston, Texas

S. Yao, C. Sorensen, E. Reyna, and J. Carnes

Lockheed Engineering and Management Services Company, Inc.
Houston, Texas

OBJECTIVES OF THE JSC LIDQA

The objective of this investigation is to determine the quality and utility of

the TM data, in particular to evaluate and understand the improvements in the

ability to monitor renewable resources/vegetatlon due to improvements in the

spatial, spectral and radlometrlc resolution of _M data. The analysis effort
at the Johnson Space Center was initiated in the fall of 1982 upon receipt of

the first _M data. The results presented here are from the first 4 months of

analysis and include: (a) geometric performance, (b) band-to-band registration,
(c) modulation transfer function, and (d) crop separability performance.

Future work will place these results on a more firm foundation and the scope

will be expanded to include:

a) the identification of _4 features which enable vegetation information to be
extracted from TM scenes,

b) the stability of vegetation _M signatures as affected by diverse geograph-
ical, cultural, climatic and meteorological conditions,

c) radiometric performance, and

d) improvement in local vegetation identification and separability due to the
additional middle infrared bands and the thermal bands.

CROP SEPARABILITY

Mississippi County, Arkansas:

Both _l (Thematic Mapper data)(seven bands) and MSS (Multispectral Scanner data)
were collected by Landsat 4 on August 22, 1982, over Mississippi County, Arkan-
sas. In preparation for such an acquisition, USDA-SRS collected a detailed
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inventory and agronomic observations over this 5x6 n.ml. site. Shown in figure
I aze the TM and MSS data for this scene in Mississippi County, Arkansas. This

_ segment la predominantly soybeans (80%) with small amounts of rice (5%) and

cotton (5%). Since the soybeans are both single and double cropped (following
winter wheat), there is a wide range of soybean crop stages (ranging from >V-5
(Indicating that 5 nodes are present) to beginning seed). The rice had the
flag leaf visible and the cotton had green boll_. This segment has a wide
range of soils with the soils in the west loamy and sandy throughout, while the

f soils in the east have a thick clayey subsoil and are sandy or clayey in the
7 upper part.

7

! t ,.

! :l
I

! _'_
!;°

Results of feature selection for agriculture/crop classes in this scene show ,

best performance is achieved when measurements from each of the three groups
(visible, near infrared, and mid infrared) are utilized. However, for optimum

classification of a single class (e.g., rice or soybeans at different growth
" stages) a different combination of bands may be required. This is scene de-

pendent but for the cases examined in the current studies the MIR bands cer-
tainly play a significant role.

TM '_SS equivalent bands" show improvement over MSS due to increased spatial
resolution and Increased signal/noise. Moreover the mid IR ands add additional

separability between rice and soybeans. A 25% Improvement in soybean classifi-
cation accuracy was noted when the mid IR was incorporated in the classification
from the Mississippi County, Arkansas, scene.

While investigations into the relationship of thermal band physics to crop type
are Just beginning, some evidence has been found that the thermal band is going
to prove useful in distinguishing between crops. In spite of the mlsreglstra-
tion of the thermal band we have observed that sorghum (which can be confused

.:i
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wlth many classes, espeelally the late soybeans) was separated when we added
the thermal band, figure 2.

RJ 4t40t

POTENTIAL FEATURE SEPARATION ENHANCEMENT
USING THEMATIC MAPPER THERMAL BAND

ARKANSASSCENE
AUGUST22, 1982

THEMATICMAPPERIMAGEUSING THERMAL
THEMATICMAPPERIMAGEUSINGVISUAL BAND(e)COMBINEDWITHVISIBLEMID.
AND NEAR INFRARED BANDS(1, 2 &4) INFRAREDBANDS(S,E &S)

RIPE_RGHUM ISNOT SEPARABLEFROM RIPE_RGHUM BEPARAT_ FROMEMERGING
EMERGING_YBEAN FIELDSUSINGVI_AL _YBEAN FIELDSUSINGTHERMALBAND(S)
AND INFRAREDLANDSATBAN_ IN COMBINATIONWITII VISIBLEAND MID

INFRAREDBANDS.

LyJ_e45O _ I_0 _t_

Expectations based upon field research data, helicopter spectrometer data, and
thematic mapper simulated data over the last 5 years may be confirmed using TM
data, The middle infrared added significant additional information over the
HSS bands (three principal components of I}4data account for 97% of the variance
in the scene, whereas two principal components of MSS data usually account for
about 99% of the variance present in MSS data),

The principal components for the Caruthersville scene as shown In associated
images of the first three principle components, figure 3, and the last three
(thermal band excluded), show clearly that there is information in even the
last three components. Note, the distinction between the inland water and the

Mississippi River and the separation of two different crop classes in the last
three components,

r IV-155
i

Ij _.......... ................ -_ %-,,:-L_ '

O0000002-TSF05



l

'I

l

Webster County, Iowa:
i,_,, The Initial TM acquisition over Webster County, Iowa, occurred oa huguBt 2,

1982. Neither the Landsat 4 NSS nor the cold focal plane bands of TH (bands 5,
6, and 7) were active on this date. This region of Iowa is predominantly corni

and soybeans (80Z). Since there is a narrow range of planting dates in the
scene, the crop stages have a narrow distribution (907. of the corn was "n
Blister stage and the 100g of the soybeans were in flowering).

Since the /tSS data were not collected on this date from Landsat 4, the nearest

-_:'::'I Landsat3 MSS data were utilized. Boththe 11_ and MSS data wereclustered

using the CLASSY unsupervised clustering algorithm and each cluster was assigned

a label based on the SRS ground truth enumeration (figure 4). Even though the
TM data only include the visible and near infrared bands, the higher spatial

=... resolution and increased signal to noise cause several classes to be more dis-tinct on the IN: roads, senesced vegetation, and homesteads. However, more

_;_1 within field variability is apparent with the higher spatial resolution _ data.
=' CLUSTERINGEVALUATIONOF SPECTRALSEPARABILITY

WEBSTER COUNTY, IOWA t_--,,_-"',' __i' _".'k.;:., i;,

O,_ PO0_2 QUt_,Li'_'_
AN UNSUPERVISED CLUSTERING ALGORITHM (CLASSY] WAS APPLIED
TO RAW CHANNEL VALUES TO OBJECTIVELY DETERMINE THE
CLASSES PRESENT IN THE DATA.

INCREASED SPATIAL RESOLDTION OF THE THEMATIC MAPPER ALLOWS
SEPARATION OF SPECTRAL CLASSES NOT SEPARABLE USING MSS DATA.

.i CORN-BLUE. SOYBEANS-RED. | ]CORN-BLUE.SOYBEANS-RED. |
_"_ MIXTURE PIXELS-GREEN / [ TREES-GREEN. NON.AG-WHI1E. l

[SENESCENT VEGETATION-LIGHT BLUE Il

i} :mlRIP lr'w "

_L

i.

i: MSS (JULY 28. lt!$21 TM IAUGUST 2, 1SS21

i
i' Vhlle the IH proportion estimates are very close to the SRS ground enumeraClons

I it is unknown now much st this is due to commission errors and omission errors. balancing out.

t
i. Category Ground Truth Proportion Estimate
i.

! Corn 43.57 39.4

i Soybeans 37.98 36.40i-
Trees 4.45 3.03

I Nonagriculture 4.49 3.03
_' Roads -- 13.21

i
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Analysis of _ simalator data flights over this site since 1979 has shown that
bands 1-4 of 1_1 are not optimum for separability of corn and soybeans in Iowa
in early August. However, the mid IR bands are thought to be critical during
this period, since the corn and soybeans apparently have d_fferent amounts of
leaf water content. This hypothesis will bc verified in the near future by
analyzing the mlddle IR bands from the 'I_S data collected only 2 days prior to
the August 2, 1982, TM data.

Recently JSC has received additional TH data for this site. Both MSS and all
'_ seven bands of IN data were collected on September 3 and October 21 and these

data have now been multitemporally registered. Analysis of these data will
provide additional information as the corn was beginning to full dent and the
soybeans were beginning to full seed on September 3. On October 21, both corn
and soybeans were at physiological maturity, but only the soybean harves_ had i
started.

of the cause of the within fleld varlabillty seen in thePreliminary analysis
cluster maps indicates that poorly drained low yielding soil appears coincident
with these confusion areas within the fields (figure 5). At this time it is
not known what effect the soil is having on the crop. However, it is thought ,.i
that the poor soll is causing a lower Leaf Area _ndex. Upon examination of _'
the September 3 scene, it can be seen that much of this varlabillty has de-
creased, thereby adding credence to this hypothesis.

I

TM RESOLVESWITHIN FIELDSOIL STRUCTURE
- SEGMENT 893 WEBSTER COUNTY, IOWA

TH|MA11C MAPPER DATA COLOR INFRARED PHOTOGRAPH
AUO. 2, TM BANDS 2, 3, 4 AUO. 19, 1980 (1,500 FT ALTITUDE)

,o, / .0 ,_ !
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btultltemporal Re_LitJtratton o£ 'IM Data

' Both tie point re.gistratt.on (using the ,]P], VICAR uyt_tem) and an edge. corrala-
'.'. lies technique are. used at JSC. The. tie point ro.gistration Is used to remove

trees differences in rotation (>5 o) and scale so that the automatic, more
.!

accurate, edge correJation technique can be applied, To use tii_.,, edge correla-
'_ tion technique, clouds, cloud shadows and data dropout area, arc removed from
_.. the data, and a gradient is calculated for each remaining plxe] of the scene.
r, These gradients are then histogrammed and the highest 15% are utilized to form
, the edge image in tacit data set (differeat channels or different sensors).
"_ Iterations are then performed to estimate correlation peak posit:ions using a

fourth order btvartate polyno,Mal. Tests show the procedure will give an
accuracy of better than 1/15 pixel when an image is registered to itself.

The August 2, September 3, and October 21 scenes of Webster County, Iowa, were
multitemporally registered using TM band 4 and the edge correlation technique
described above. Tests of the accuracy were conducted by measurlng the llne and

pixel offsets in 40 patches (each of which is 40 plxels by 40 pixels). The accu-

"i racy of the misregistratiou from August 2 to September 3 was about .25 pixels ms
] and the accuracy of the registration from the August 2 to the October 21 was

about I plxel rms (which does not meet our need for O. 5 pixel rms). The exact

-i:i cause of this unacceptably large error is not known at this time; however, it

i is expected that different edges are apparent in the October 21 scene when most

I of the vegetation is senesced as compared to the August 2 scene when the corn
i is at full silk and the soybeans are flowering.
i.!

Band-to-Band Registration Accuracy

; The Thematic Mapper contains two focal planes, the first contains bands I thru

4 (blue, green, red, and near infrared channels) where the second focal plane

" contains the mid IR (banS_ 5 and 7) and the thermal (band 6). Thus, the purpose

_i of thls analysis was to compare bands to show the registration within each focal
:_ plane and between each focal plane.

The September 3, 1982, sceue over Webster County was analyzed using three pairs

of channels: 2 and 4 (within the first focal plane); 4 and 5 (between the first

and second focal plane); and 4 and 6 (between the first and second focal plane).

: The scene was divided into collections of 40-by-40 pixel regions each of which

was registered using the edge gradient procedure described in the previous

: section. Each 4e-by 40 pixel region line and pixel mlsregistration was then
• plutted and the mean and variance compared to the specification. As seen in

figure 6, bands 2 and 4 were well registered (within the speclf_catlon of 0.2
i

plxels, 6 met_rs) whereas bands 4 and 5 were found to have almost one plxel

mlsreglstratlon. Furthermore, the thermal band (band 6) was found to have an
additional bias along the scan line of about 3-4 pixels (the specification for
the thermal band is also 6 meters). The multitemporal registration of IM at

JSC has a goal of 0.5 pixels rms from one scene to attother. Mlsreg_stratfon on
the order of that observed in the mid infrared and thermal infrared will

severely degrade the ana]ysls of spatial and temporal feat_,res In the _I dat,_.

This will affect classification, crop stage estlmat'!ou, emt,t'gencedate estlma-
ties, and estimation of Leaf Area Index of vegetation ,:am>plea.
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"- GEOMETRIC FIDELITY OF TttEMATIC MAPPER
," ,

,",..
TWENTY.ONE COMMON POII_ rs WERE LOCATED ON THE THEMATIC

L-- MAPPER IMAGE AND THE 1:24,004;CALE TOPOGRAPHIC MAP

h ,f

ruMPLE ROTATION, I "_
TRAN$LAT ON, AND

_ SCALING (NO $TRETCHINGI !GAVE LESS THAN
ONE TENTH OF A /
PIXEL AFJ.S,*)LUTE
§RROR

"i /" TM AUOUST 22. t_
L _ BLUE TM:_. GREEN TM?, RED TMB

Geometric

_ The P-tapes recelved from GSFC to date have not been corrected for ground con-

"_i"_.r_". trol, only system corrections have been applied. Nevertheless, the imagery

=,._ .. appeared to have high geometric accuracy• The 7-I/2 minute Tiptonville,

_;_,_. Tennessee, quadrangle was extracted from the August 22, 1982, Arkansas TM scene
and 21. control points were chosen on well defined edges that were apparent

;:_!_:. in both the scene and the USGS quad sheet (figure 7). A least squares fit was

i_.. i .
F_

, ;-_. •
•..- . ,._ _I

}:_, . . EVALUATION OF
_, ; ._ '.___• ,.•, _,xE_ TM BAND TO BAND REGISTRATION

-: WEBSTER COUNTY, IOWA

SEPTEMBER 3, "I9FJ2ACQUISITION
5

_, BAND 2 MS BANb 4
LiNE AVEHALIE OFFSEr _i o13 PIXEL
COLUMN AVEF(AGE OFF C;F1 U 17 PIXIL

°" " _'_ .. - _ • _/l• i1 ,

j t| *

' ':J .1 +2 'J " '
L

• 4 ....... '_ .... ' _'_ _-4. _
4 _--'1 --_ +--_---_ ..... I.... -I ..... 1F - --I1--- -J-f-_"IXEL 7 1 • PI×EL

! .

",._ BAND 4 V_';BAND _.; BAN[) 4 V_ HAND fi
LiNE AVFI:IAtJE UI I i;I; r 01_t PIXEL

= COl UMN AVflIACF O|F3L I I)[{! PI)(FL LINE AVFRA(tE (3Ff,_| I ,053 PIXEL
C--" C(}[tlMN AV_ HAUL orr'q I .368 PIXEL
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determlned which allowed for scale change and rotations, but did not allow for

dlfferentlal changes (e.g., rubber sheeting). The resultant rms error was
<I/I0 plxel which indicates that the geometric fidelity of the scene is excel-
lent, certainly better than that expected a year ago when mechanical interfer-
ence between MSS and _ was a major concern. If this is true this will cer-
tainly expand the utility of _ data and will significantly reduce the cost of
multltemporal _ analysls.

Modulation Transfer Function

The response of the Thematic Mapper was determined prior to launch by collect-
ing imagery of Bar patterns. In order to determine the response of the _i
after launch, a group of north-south edges in band 5 were chosen which had
homogeneous fields extending at least three T_i plxels from the edge. The MTF
was obtained by taking the Fourier Transform of the gradient across each edge.
These estimates were obtained using VICAR software. The overall MTF shows a
more rapid fall-off than was observed in the protoflight measurements (figure
8). However, when modified to account for the cubic convolution resampling
done by GSFC and the spread function due to the atmosphere (Pearce, 1977)
better agreement is achieved. Better agreement could be achieved if the optical
depth of the atmosphere were known, the position of samples were known relative
to the edge and better contrast existed across the edges analyzed.

MODU_TZOI! TIt_NSF_R_roN FOR _ CHANNEL 5

W PEOTOFLIO}rrt4_8_ (_p_)
3 TIME8 NORMALA_OSPN_IC TURBIDITY(PEARCE).(LOWER)

,6 RANGEOF ABOVEWI?II (18F0
C[JBICCONVOLUTION

1.0 £

. : RAN(IEOF 8YS'I'D4M'i'FESTIMA'['_) FROMk OOOD _M SCRUB

0.8

.. 0.6

0._

0.2I (I
0.0• : ; l ; : ; ; : : ! ; ; : : m ; ; : I

3O0 15o IOO 79 60 50 b3 :98. 33 30
MI_PER3PER CYCLE
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v Conclusion

Although a few problemo exist with the registration of the middle Infrared and

thermal Infrared, the overall quality of the thematic mapper data appears excel-.y
lent. The tmprovement_ in spatial resolution, signal to noise, quanttzatton

_: aceurncy, geometric accuracy, and the inclusion of new and better placed spectral
• bandB make TM a welcome and badly needed improvement over MSS,

Reference
r.

" Pearce, W.A. 1977. "A Study ef the Effects of the Atmospheric or Thematic

Mapper Observations." Report No. 004-77 EG&G/Wash. Anal. Set. Center.
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N 85 -23 1 95
.. ,., ABSESSNENT OF CONPI1TER-I)A!]EI) (_l,',OI,{w,.Ic HAPP I N(; {}l,' ltf)cl< I}NIT,q

't

.: ,' [N 'FILE LANDSA'I.'-lt SCENE ()l? :_OR'FIIERN Dl,:h'rlt VAIA,I';Y, (;AI,[I,'ORNIA

,. t
_._,:'," _ Niclml,'t,_ bl, Hhorl

--a

-- .'.': CqMt: ')22

. ' _h_d(tard Simt'_. ;light C_,nt_,r

,..: ',, t;ro_.nb.lt, Ir_ 20771

" Abs I:r,-(. I:

Geologic mappi, ng of str_ltigraphlc .nit._z by use, of :ler_al_,ph_iolvLi(,r|_ret,ltioll
" methods has bet!ll 1:11o established pr;wt:ic,, for m, arly four th.ead_,;.i, M_lpl}ing by

,. means of multispectral remote sensors on u'rcrai:t and, _',i,ncc, the l lrst l,,qnd._Jat
" in 1972, on spacecraft shnuld in principle he a mare efficient procedure,,
'::_ Classification mapping of stratigraphic units within Landsat scenes by c,,mput:er-
":_ based statistical analysis of spectral da::a has achieved relatiw_,ly low and

:. generally unacceptable accuracies of typically 40-60% ,.'n seml-arid mountainous
;::..';.,'. terrains. Rock unit identification by ratio and principal compolltmts analysi,_
_" may reach higher accuracies in terrains dominated by good exposures of rock

= materials and sparsity of vegetation• However, none of these tllethods is likely
.<.. to attain consistently high accuracy in ,any faw_rable terrain be, cause of two

_",:'-;" fundar,,ental differences between conventional geologic maps and those derived
from remote sensing data. These are,:

_:._, 1) only spectral categories of rock materials e,m be separated by remote
-.::< sensing, allowing s(_me rock units to be specified but geologic maps dupend on

.. stratigraph[c discrimination in which relative age. must be rec:Jgnized by some
-,:: time criterion that normally requires close examination, and

--':}i_- 2) much of the area represented by a stratigraphic unit is actually covered
,:_;'- by soil, debris, vegetation, etc. and is mapped by extrapolation whereas a

_I_ ' ' 1" remote sensing map shows only what is at the immediate surface.

,"" Improved classification accuracies have been predicted for Landsat-4

_-':. because of the four additional spectra._ bands, higher resolution, and greater
.. sensitivity of the Thematic Mapper (TM). This has now been verified for land

':: use and agricultural classif]catlons but has not been fully tested for geologic
?;'.._ classes. This paper reports results from a series of classifications conducted

..<-' on a subscene of the northern Death Valley, California, acquired by the TM on

.,..,/... November 11, 1982 These ,_re summarized as follows:

T.

I'I_I"CI,:DtNG t:AGE BLANK NOT FILMED
,

, ?,-
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.:.: '.hlp,,rvim.d ,F_IlIix lh(I(I 1,2,'1,4,q,7 l_i
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_' " lhlp,,wvlm,d " l,'i,'l Iq
I I _lp

. ,, n " " 2 _:| ,w4 lliffl

i [I,lh lllllilllli'rvi11,41 " ' '.... I: I , 2, .'_,4,4, I I I !:
" (Ih C IIInl 01')

II II _ l_l/ll (l ('//_

" Mpamlr_4m,ul'_s_F ,'weurncy aru m,:rh,l.hrmtgh v,.np,Jrltmnwith lhe 19'17edit ira,

,_£ l'h., lleath Valley gt, ulogi¢ _dwet. 'l'hi_.i ,,Irlploy_J ;I tJhnplified .lap v,,r:lim,
::;,i wllich i_; r_.gi_It(,red hy eOml_Uter t,, flu, imnp,(, data ba_4e, a|luwJng _I pJm, l by

=.'T - pixel ,.arch with the ('lat_tllfit,d rueno, The 1'e_lulttl from thi_ _Itudy _lhow act'uracy
ratie,,.,;_ from 30 to 7970 depending on the type t)f ¢las_ifier uilt, d and l:lw .4tati;_lical

.'_: adju,qtments made l,o the data, Accuracy value_l in idelltlfylng geologic tnlitll
•7., were 2 l,u3 lilnt'H IIJgiler for tla_)m, in the relatively flat vallt, yu ttl_ln fur

..;; units ill the ruBBed ilmnntaitlOU_; tel'raln, lllll}rovuIilellt8 ill accltracy w[ll be
,,4 HOllght by correct il4; for slope/,tSlmct wiriationu in mountalnou,4 terrain ll,4iug
._,, topugraphi_ data recorded in Defense blapping Agency (DMA) tape_, 'the abow,

"_,- claH,41t_:lt i.on results will al_o be compared with ratio and prluc, ipal cu,ll.mvut?.

._:. imag,, t: lax,4i f{cLIt l.onH made from the ,qallle lqctt_,ne,

"q Introduct ion:
•. J _"

r:':" geoscientlsts who apply computer--based analysis to Land'aat scenes have
, _ established ._ hierarchy of preferred processing techniques ranked according to

: l:be relative success of each in recognizing geologi,z units and features of
,,,'.!" practical interest Generally, processing of digltal data through Principal

, Components Analysi_ and by ratiolng selected band combinations has proved most
;:' effective for discrimination of rock and alteration units where rock units are

_:. homogeneous and well expoued, Band-pass filterlng anti edge enhan,:_.,,, at techniques
•e,, are considered be.,;t for improving detectability of linoamentt_ and ,.: h,_r structural

.* features rn some instances, just a simple image enhancement prcc..,ne involving
. spatial filtering and radiometrlc adjustment_, m_y be sufficient -o ,'ield a

_3;. visual product which diHclt_.aeu optimal geologic infor..atlon suited :_ scraight:lorward
.:: photo interpret ati,m.

:- Several disciplines that use Landuat and other remote _enuing ,_ _a have
": found digital ('lassification technlqucs to be the most in format iv. _ er.roach t:o

::...'." idt,ntit:ying £_,atures and materials at the earth'._ ._urface, kgrono,..i_..s apply
::: these techn'qut, siu categorizing crop types. Land cover/land use :,:cvialists
." lind utati.,4tically-bam, d ela,ssification rellahle for mapping first, ,,._d secon(l_

level _,t'ographic clas,4 , When measured by quantitative accuracy .. _ ,dal-ds_



accuracies of 80-95% have been attained for individual crop typos, and
sometimes several, crops, aa wetl aa for major subdivisions of forest typ_a and

for other principal ground cover classes, In contrast, g_ologlsts have rarely
::' exceeded accuracies of 40-60% using varlous methods of cla_aifleation to

raproduc_ Landsat-d_rlv_d maps of stra_Igraphlc unite made from Multlsp_ctral
- Scanner (MSfi) data for ¢omparlaon with pubiished map_ mad_ by conventional

methods that include fi_ld studie_ (Siegel and Abrams, 1976), fi_voral reasons
can be cited for thin "low score", chief among which are:

'_ 1) A fundamental difference oxi, sta between remote sensing ctassificatlon mope
of ,naterials actually at th_ surface and most geologic maps, Geologic maps
record rock type as recognized from hand specimen examination and fro_, relatlve

geologic _S. baaed on tlme criteria derived grom fossil evidence, radioactivity
measurements, or superpositlon relations distinguished in the field or by
photolnterpretation.

2) Another charactcrtstlc of geologic maps is that the mapped units are
frequently extrapolations of the usually low percentage of surface outcrop

. observations (generally only 1-2% of the eastern U,S. and 10-30% of the western

._ U.S. ground surface is actually bedrock; most of the remainder is soil,

- _ vegetation, _.'ater,and cultural features), so that the actual "ground truth" inlargely inferential, and,:i

"_'il 3) The immediate surfaces of exposed rock units are often strongly weathered

!_,; or otherwise altered so that the spectral signatures of the fresh materials

(J_ comprising diverse rock types _re in effect replaced by those of more uniform

._ end product alteration. In very arid areas where mechanical weathering dominates,
it: appears possible to relate specific alluvial classes to the lithology of
their provenance (Blodget and Brown, 1982).

These three factors, and others, are particularly troublesome in efforts to

classify the rock materials in the same way as conventional mapping, although
.... they likewise may adversely influence results in recognizing these materials by

_! ratio and principal components methods. These limitations prompted a comment

by Michael Abrams of the Jet Propulsion Laboratory during his oral presentation

at the Landsat-4 Early Results Conference which, to paraphrase him, stated that
= "the scientists at JPL find ratio and principal components images to be superior

• to their attempts at zecognizing rock units by direct unsupervised or supervised
.. classification methods".

- While the "track record" for computer classifications of geologic units
: has not yet been outstanding, one mlgk_ infer that part of the difficulty arxses

from inadequate spatial resolution. Certainly, higher interpretation accuracies
can be achieved in geologic mapping from aerial photos. In addition, other

regions of the electromagnetic spectrum may be more efficient in differentiating

rock types than the vlsible-near IR region sensed by the MSS on the Landsats.

Thus, the Thematic Mapper (TM) on Landsat-4 should be capable of acquiring data
from which a greater number of surface rock units would be discriminated, allowing

a more reliable geologic map with accuracy exceeding 60% to be generated.

To test thi.a hypothesis, this paper will describe an experiment tc classify

a subset of the November t7, 1982 TM image of the Death Valley scene along the
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n"

i l, t
i [ (:alifornia.-Novada border, employing procedure_l developed for I.ho IDIMS computer
_' t riytltoln op¢,rnt, l.g ;it the (;oddard Space Flight Center, The principal object:iron" !

"'i".i ,if the tittldy arc to:

:"_] 1) D,:,tormlno the t,xtnnt, ;f any, of accuracy illlprow,lll(,nt J.n titling clannJ, ficatJan

.,,,, mothadtt Io map .tc, nllJllgl:u] geol.agi.c un.il:n brought on by the hJgh(,r ronoluti(m,

....."].t ,*lrldi. l:innal npe, ctrnl bands , and tholr prontr, r t_r,nt4itivil:y, of Ihr, Thom;iti.e Mapper
.+ rr, i,ul_.ivo Io reililll-,q eel.tarred by Siegel lind Abrallln for tile Imlldnal MSS an I;|1o

.... Ill Zilldord _lf I'OVOI'PllC(',
,b,I. *

'_ 7) ],',Villi(el(, Ihi, r(,I;ll iv(, t!l:f:icil:llCiel.l (if tilt, quporvlaed vor;lu.q ilritltlllorvit:lod

•j ;llllll'll;Ichl,;l t,I i'Ollllllll er-b;lttf, d gool.agJc m;iplii ng; Ii kewl no, lho offeel:irene;In of
:' '< t Wll f'Oilllllllll t' la,qtt i fi_,ra i ;l oxamlnod
J '7 ,

: .'" 't) (lonlp;Iri, t'. I.;la;_ i t ical {fill riiaptl wi th Fat J o ;lad pr iiic J I)a I ciiilipollell[ fl [ill;ll](",'l t tl

ii ,":;; ;!til',,l'l all( tile I ypt,s. _lilf! d<'_i'('2s. IIl'.' Jfl l:OlFillal; lOrl prey[deal by o;Ich.

• ,..:;,;7 4) Shed nlorl, light on the_ rl2asolls for the low accnral'.ies in correc, tly idolltif'ying
:. r. ;ind mapping geologic units by remote ,qensing tec.hniques and to suggest possible

L.._ ;lvonues for Jlilprovelllent. The results el, ported here lllnst st{ll be, considered
• ,{; preliminary in Lhat even more sophisticated processing has yet to be applied

;,i and that the stand_trd for success in terms of agreement with published maps...., ileeds t."urthei refinement,

"'i

' .;..i Data Processing Procedures:

_"_,._ A set i es of supervised slid unsupervi sod c I assi Pl cdl ions were performed on

...,.;"": the r,_flectance bands data subset taken from the Death Val. ley tlcene (Landsat
"_.:".:. 401'_/4-17495). as outlined in the following sequence. 'rile thermal band 6 (10.4-

•.:." 12.5 ilil) war n_t used because of difficulties ill registration of its larger
. ,..::. pi.xels with those ot: the other bands,

,'r

;°"_ CLI: Supervised; Bands I, 2, 3, 4, 5, 7 (subsampled partial scene)

A...";;' CI,2: Supervised -. 6 Bands (partial scene,)

Lo,.:,_' CI,3: Supervised - Bands 2, 3, 4
" ,,_ CL4: Supervised -- llands 1, 5, 7 Subsampled

':* t" " ,A,_: Unsupervised .- Bands 2 3 4 (16 clusters) Partial

: CL6: Unsul_ervised - Bands 1, 2, 3, 4, 5, 7 (16 clusters) Scene_v,

',} GLT: Unsup(,rvised - Bands 1, 2, 3, 4, 5_ 7 (32 clusters)

,_ ..,": All of the above except CI,2 utilized a resampied 3OOx320 pixel subscene; CL2

•--i:_5 was performed oil a stibscene containing all original pixels. A Maximum Likelihood
_ ....:, classifier was applied to all seven CLs; in addition a blinimum Distance classifier
i ..... WaS appl il,d to CLI

,. Ratio: 511; 3/4; 5/2

-:_-" PCA: Six ccnnliOiltmts ; various combinations of three.
! _;

! <'.'..7' A more del.ai led stilliillary of the steps involved in the c.l;lssifieation is giveni
! _' IlCI e.

i ).:- 1) The reference partial area chosen from the full Death Valley scene

:i _'. cov,,rs a 6(1 (N-S) by 45 (E-.W) km equivalent subset of the 'rbl scone, occupyiilg

; %1
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• roup, hly Ill(, .ppc,r It, ft 1/|61h of 1:11o full imng¢,, P.¢_pr¢_smlted are the northern
,: m.ctlon of I:h(, I)(,nth V,_llay basin, tile northern end (known locally at1 the

'r.cki Mountain) of the, Panamint Itang¢,, most of the Grnpovlne Range, and nnme
<3)[ tilt' IVunerr,.l Nount:linH, a_; loc;ltod in PJl;.ro 1,

,.

2) Conlroi il+ l++,tl:iup, t,p ela++tmfl wrl+; 8uppllod by the i977 Death Vall(,y

qi+oot (ll_,rr,';ft_,r rtlfol.r(,d I:(} by tile, initials DVS), a 1:250,000 ncnl, e g(_ologi¢J

map publiMit,d by the C:;llif.rnJa l)ivlnton of Hines and geology, Mo_t of these
- cl:l:l'te:; ,'it(' b:l:;(,d <)n I Iw ';tratigralflllc .nit,,l depicted i,n the 1977 geologic

Ill/Ip; ,,.,evernl ('ltll;_tt, t; are r,,_mblnatlons of t,nil'_ _lh(}wn on the map, A goneraliz(,d
" v,,r_li(,n (_f t h,, 1077 map :lppearn in Fi.gl, r{, 1. q'hit} latter map nerves as the
,;: llt_, C lit lit,, y rl, ff! rent,(_ , i

i}) All (,:()llll)llt(,r allalys(:s were pt:,rformed on the Int(:rractlve. Digital Image

' Manipulatit)n System ill)IN,q) at NASA/Oodda.'d Space Flight Center, This system
-; is tied t,_ a Ih,wl,-:tt-l)ncl(ard HP3OO0 Series II minicomputer with 512 kilobytes

- of ('ore tat,mary. Landsat-4 data are introduced from 6250 bpi CCTs and stored
.j,

!" on disc dr,ring processing. Imagt_s are commonly displayed as resampled data

"-- arrays on a 1024 raster line beAnza monitor, from which most illustrations
shown in this paper were produced using a Calumet 4x5 inch View Camera to

/. I)llotograph directly off the screen,
,r,

• 4) The first subset image was created from :tll pixe!s i.n the TM data set

!_'i. within the represented 1/16th portion o15 the scene. This image size is 1500

i_'. by 160() pixel, s. After carryiug out several functions on that subset, it was
:,., c(mclttded Ill'it the total number of data points was too large to be Ilandled
:_ t,t'l'i,.it_,nt ly on ID1MS, '1'o create a mort. manageable data set, the initial

!_.- ::ut),_el was re:_;impled to 300 by 320 pixels by selecting every 5th line and 2._l:h
_" qaltll)lt, (pixel) willllu that lille

;-,-. 5) For al! ;malys_.s save one, only the six reflectance bands were applied
;t) tile classification. Three combinations of bands we.'e examined, namely

I_mlds 2, _, 4 (to ,approximate the MSS configuration), Bands 1, 5, 7 (to investigate
classification using the non-btSS bands only), and Bands 1, 2, 3, 4, 5, 7 (to

test the ash, eruption that more bands will improve discrimination and accuracy).

6) The classification functions were just those developed by the IDIblS
supptler (ESL, Inc. of Sunnyvale., California) an the recommended routines

using the :mltware programs provided for the ._ystem. For unsupervised classificatiot_,
(, tile normal stt_p,q are:

i.

;° A. Run RANDSAMP, which randomly selects a large number of data points (plxels)
L:|-oln the set, from which to build up the statistics needed for clusterlng.
However, in this (:xperiment, this stop was obviated by considering the 5
line - 5 sample tesampting t:o htlw, accomplished a similar task. The validit.t
of l_ili :_ :ll. tt'rl_nt iw" was i1()1 tested,

B. Rut_ [S()C],.q, 1o gather statistical i|_fovmation using a clustering algoritlun

from which a |lunlbur t)f (i.niti:llly unspecified) s(,parable classes are select(rd.
Output includ_,*; a statistical file c()ntainin_, the number of points (pixels)
in e;|ch clu,,;ter, digit¢|l coutlL (or DN) mean.'_ ;Ind standard deviations, and
t'OVill i,all('e matrix ft}t* each cl..:_ter ;rod t,,:lch re-associated bglnd, and the intercluster

(li.,_t;|.ct •, (in I)N units) it_ ||mltidimensional apace for cluster pairs, For two
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,.T experimonts I:ho fol It)wing dt, l]aults for m:mdatory ;_nd optio,vll pnramelern were
• accepted :
i.

•v Ntllllbt!r oi! ltol','Iki,,llS _ ,_I

DLMIN '-, bllnlmum di :lance r(,quired holwoc, n clust.,,rs _ 3,2 l)N
, ,qTDblAX--. Standard ,loviatlon limit abovo which t'lut_torpd vallv,_ will b,,
'L t_p] it inln I;r,p;irato clunlorn ._ 4,5 I)N

.. NMIN :" Minimum mlmbpr of (Inl/I point_ to accopl a clustPr :, .JO
• MAXCLS = Ma×imum number of clar, sen s(mght "_ 16

'.' CttNTI-IS '_ 'rhrefdlold at which clu:_ters may be optionally combim,d ,_ 3,2 DN

: 'the parametric conditionn for a third experiment will b,, npocifit,d I,'lLOr
1: ( P, 22)

C. Run CLASFY, which assigns each pixel in the subset: to I:he illosl similar ,_f

the clusters ost.,'_bllshed in ISOCLS according co the criteria devt:.h_pod in the
.. statistics file, using a maximum l. ikelihood decision rule. The ntmlb(,r of

classes thus specified wit1 be less than or equal to the number of assigued
, clusters. Numerical output consists of a determinant value, a cmlstant term,

_,.. and the inverse covariance matrix for band pairs. An image is produced consisting

_;_ of pixels assigned to each cluster, expressed in grey levels at increme.nts of
preset DN values (a narrow range, which can be made more "seeable" by contrast"

"'...... : stretching). A second image, based on Chi-square statistics, ,_;howing the
relative confidence in the classificatiou of each i:ixel, is also formed.

o'[_, For supervised cla ificatlon, these .'_teps are taken:

A. Run 'rSSELECT, ill which training areas within the image are (lellno:,ted (by
:; cursor-drawn ' ines) as named el.asses. Maps and otll(_r identification stmrcros:'3; *

4 are used t.o specify these classes. The training sites are selecte.d ,:,Jrolully

;:_ to insure that they are typical of tile class and possess reasonable sl,ectral
('_. homogene i.t y.

_-:, B. Run TSDEFINE, by which appropriate statistics, analogous to those developed
,7! for ISOCLS, are calculated from the pixel DN values within each training
." site. Documented output includes means and standard deviations for each

:'_" identified class arranged by band, covariance matrix and corre]aliou matrix

_:, values, and histograms of the data point distribution by class and band. An
optional program, called STATPLOT, allows two dimension (bands as axes) plots

•f. of tilemeans and standard deviations; the resulting ellips_,s resemble smoothed
,; depictions of the clusters produced by ISOCI, S

C. Run CI,ASFY, ,'sing the TSDEFINE statistics instead of ISOCLS.

: 7) After a CLASFY image is displayed on a color flu)alter, the final step consists
.. of assigning (also callc, d "aLarming") c(,1.)rs to each class or cluster using the

TCC function on 1DIMS to produce the Classification Map (referred to hereatter
' by its CL number, _s for example CL4). Several combinations are usually I.ried

.: out to find tile most pleasing and [nf(,rmative color patt,,rn. Only 24 color,_
are available from TCC for this l,urpose; wht,d classes exce,,d ab(_ut. 12 il is

"",: difficult l t) find enough contrasting colors l,) ;;,'t off some _,f the classes, :is

: is evident From some of the illustrations in lhis lxip(,,, (3()lot assignments
-" were worked out first for tile snpervised clnsstr:_ and these ;;allle colors were

t..hun, applied Co (.]usters in the tlnstlpt'rvised t:t,,\Sl,'Y itnap, t,s that al,peared to be
,e(luivalent as .iudl;tM from their g,:,ograpilic ,listribution.,_. t:,_lo_ .-lssignmelll.s

.t .. for several, classes had to b,_ "jug_,led" to lind :l discernible ,.,}mbinatior,.
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8) Foll.owlnt_ prem,ntation of tile first r_,t_,.lltzL _f the Death Vall,,y _;lndy aI

the Lancl:_at_4 Conference, two additional, more r_ophi, t_ticatpd cl_j:_,_iflcati.on_

wore performed oll IDIMS. I,_or one (CLT), the pro_ram utilized Ji more i'i_,orou_

u_i_uporvi_ed procedure, Thltl approach, prt, forr-d by land .t_p _l_.clali_t_ at
Goddard, roq.irer_ t_poci, fJenton or' a l.ar_er nt.nbpr of initial cl.,stor,_ a.d more
i.l:oration_, [n the other (CL2), a t_maller ,mb:_,t from th. cn'it;i.al 1500 by

1600 pixel imbt_c¢:ne w/lt_ cl;lflsif. Jod in tote, The t'ontlil_J_)llt_ cll_H,n ft_l" rllp,qp
_}pe¢ial cla_}nificationt} are dlsctlnno--d' _furl-hor ill the re_ml, ln _;e(,iion,

9) A neriel_ of Pri.ncipnl Component._ Ai_al.yt_i;_ (PCA) imam;on were produced ,3n
IDIMS through the KI,TRANS (Karhuuen-l,oew, 'rransformati.n) functi,m d_vt, lop_'d by
ERIM. By using the nix reflectance bands in TM, a set of t_ix c.mponent Jmage:_
(black and white) were _;enerated. The,qe typically were "flal." a:_ di,_;pl;iyod,

i,e., showed little grey level variation, so that each was ;_rbitrarily sCr_:.tched
to a high contrast version. Varit,us combinations of three such stretclwd images
were display_,d in red, green, blue color composites on the monitor, A similar
approach was used in producing a set of ratio images. The DrVII)E function was

applied to pairs of reflectance bands to give 7/5, 5/2, and 3/4 ratio images.

Stretched images were then superimposed and each assigned a primary color Lo

form color composites.

Development of the principal components and ratio composite images was a

secondary objective of the study. No statistical data were extracted nor were

possible refinements in the procedures attempted. The purpose was simply to

provide a visual comparison between patterns of distinguishable ratio and compont.nt

units them and the classification image units, as produced ma the same image

processing system, and to tie in with ratio composite ima_,es formed by R. llavdn

and other TM investigators (see this Proceedings Volt,me).

I0) Following production of all o'f the classification prodt_cts, the re:_ults

were field-checked during a one-day trip by car on April 21, 1983 through northern

Death Valley. Observations and implications from this on-sito visit are reviewed

Ln the Discussion section. The author gratefully acknowledges the assistance

of Dean James V. Taranlk of the Mackay School of Mines, University of Nevada

and Mr. Marcus Bornegasser, a graduate student in remote sensing there in conducting
this "ground truth" excursion.

Analysis Results:

The end product images of four supervised and three unsupervised classifications

of the Death Valley subscene are reproduced in Figure 2. Tables 1 and 2 summarize
the class and cluster means produced as statistical files by TSDEFINE foc CL1-4

and by ISOCL8 for CL5-7. Analytical interpretation of the information giw._ in
these figures and tables is reported in this section.

At the outset, a conceptual framework for this analysis can be erected by

gaining a visual understanding of the geoiogy and geonlorphology of the north,:rn
Death Valley through a brief re.view of scene content in a :_eries of photos

taken during the one--.day field trip through the area on April 21, 1983. Look
again at the geologic map and legend of Figure 1 anti then examine Figure 3A and
B and their captions with thin in mind.
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_' The i.nterpretatlon_ can bent be c,)mmnnJe.al:ndby vl.n.ally "wal1(ing thro._h"

I'hc_. clans dilttrlbulio:,;t in each ,if tht. ttiivt_ll claftftlfinatioll illap#_ Hhown in I?il_Lll.'P

2, pointing out both _tlmil.riritlen and differencefl among the varitillS rt,nditlons,
CLI is t/lkon ,qs the ,qtlllldard of reference, B(_foro tr_)atlng each mltp in nlimo
detail, tllreo general cemm(,ntn about certain clanalflcations ,qro in el:tier:

l) For the CL3 and 4 supervised c].assiflcatlonn, the numerical I)N illeallli Pot"
each of the two 3-band cases (2, 3, 4; l, 5, 7) are identical with I:hofm listed
for the 6 bands in Table I which records the values derivt,d for CLI, ThiI_ altIHt

be nlmF, ly because the values are junt those calculated for tile ,q,'ime trai, ning
site_ which are used i_n all three classifications,

2) The unaupe.rvi:led Band 2, 3, 4, classification created 9 distinct clusters
under the standard default conditions. These cluster,._ were initially assigned

a selection of contrasting colors so that their spatial distribution was visually

defined. Subsequently, these clusters were correlated with certain of tile

classes set up during the first supervised classification, by comparing their

DN numbers with those in the supervised statistics files and by establishing

equivalency in spatial distribution. New colors compatible with those of CL}

were then assigned.

3) When all six reflectance bands were applied to the default unsupervised
::; classification, most of the same 9 clusters were created, although the DN moan

for each is slightly different in value, In addition, two new chlsters were
established, both of which could be correlated with two more classes as specified
i.n CLI.

Each of the CL mappings and the Ratio and PCA results are now considered,
By far, the most at-tention is given to CLI, inasmuch as that is designated the

best' product to which all other classifications are compared.

CLI: The CLI map is shown in Figure 2A (left page), together with the other

three supervised classification maps for easy visual comparison. However, thu

CLI map is also reproduced on a full page (Figure 2C) _o depict finer details.

The CLI map versions (see also Figure 7A) are judged to be the most "believable"

of any of those reviewed in this section. Considerable care was exercised in

locating suitable training sites. Tracings of the polygons outlining one or

more sites for each class are reproduced in Figure 4; the classes are identified

by the symbol patterns used in Figure l as defined in the accompanying legend.
Table 1 records the 6-band means for each of these classes.

An interpretation map showing the distribution of recognized classes

(mainly stratigraphic units) appears as Figure 5, again using the symbols presented

in the Figure l legend. This map was generated by tracing the class units from
a copy of the CLI map made as a transparency. Each unit has been assigned an

identifying color (see legend in Figure 2B). The boundaries between units, as

shown in Figure 5, are somewhat arbitrary, representing the author's choice for
dominant color in parts of CLI where several colors are mixed owing to misclassiPication

and other factors. A revised CLI map, shown in Figure 7A and discussed later,
aided in selecting some class boundaries.

A qualitative appraisal of the accuracy of this classification can be

drawn from comparison between the Figure 1 and Figure 5 maps of geologic units.
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[ TABLE I

7 6-BAND SUPERVISED CLASSIFICATION

DN
Class Color I 2 3 4 5 7 Unit

I Orange 97.5 48.4 60.6 52.8 87.0 55.1 QD

:, 2 Pink 107.2 54.1 68.1 59.9 97.1 59.8 QL

3 Black 54.1 19.3 18.6 12.8 13.2 7.2 SHAD

4 Red 156.6 75.3 90.8 76.5 120.9 77.5 QLB

5 Peach ]5.6 36.5 44.9 41.6 76.5 45.8 VO

6 Yellow 108.2 55.5 71.3 61.3 102.6 65.2 QS

7 Purple 75..6 34.4 42.0 36.1 62.0 36.7 PPN

!
8 Brown 74.9 33.0 39.1 33.3 54.5 32.0 PNM _,

9 Aqua 81.3 39.8 49.8 44.4 83.2 46.5 IPC ;

I0 Bluegreen 82.6 41.7 54.0 48.8 94.2 52.4 PCC

II Blue 76.5 36.1 44.6 40.8 81.2 46.5 C
CP

12 Blue 75.5 35.2 44.3 40.1 80.9 47.7 OP

13 Ltgreen 77.0 35.6 42.1 48.4 59.3 27.8 VEG

14 Dkgreen 82.2 41.2 53.9 52.3 96.9 55.6 TV

15 Grey 86.4 39.5 47.3 39.7 66.2 39.1 QA

16 _ite 88.8 43.3 54.6 47.8 88.7 51.2 QAB

17 Blue 74.5 35.4 44.0 40.0 75.2 43.0 MP

18 Dkgrey 81.7 37.0 43.5 35.2 51.7 26.8 QCS

19 White 170.6 85.6 104,7 87.6 61.9 24.9 QSB

20 Ltred 101.5 48.2 58.6 48.6 59.2 27.1 FPD

21 Sand 108.5 56.0 73.7 69.4 111.9 58.1 TN
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.- Comments on the identification and diatrlhuti_on of unil,u in the Cl,I cla_;.qii|catlon
_- maps arc, introduced here:

-._. 1) An e×pected, all. uni.t_ defined from the DV8 map __;_ g,encralized ;_re fmmd
: .._.' in rhe CLI map, simply because each wan upeclfiod as n cla:_ts Ioc;ll:od ,11 i l ,_ ,uqn
i._ " traln[np, r_ite, Of course, name cl.asaor_ repre,qent e,_mhlnatlou_ of two ,_r m.rt,

.." g_,ol.,3p.ic formation units at_ mnpped on the DV8, Combininp, in necessary I)oc;m.,mi

} "!_ flOIIII! o1" those farmatlonn occur i.n outcrops of limited let.oral ext,,nt qlWill_ _, I't_
i ';,"

} ., complicated fllul{:Jng evident in the mountal.n terrails, Thufl, ,'1:4,qt.tellce of
! ., formations ranFIing, from upper C,ambrl.an to Pennt_ylvani.au in ago is exp,_:_ed ,'lt_

i. "_ rop_,al[nl: fault sl. ice8 in the eastern Tucki Mountain, aa _hown iu I.ho ,rjgln,ql
: .:. Death Valley ,qheet, These units are not dltatlnguishabl.e i.n tilt, im:tgo:_ di:._pl;lyed

. on the IDIM8 'rV monitor nor t:ould they be recognized by con.qlslont dJ ffprencps
• I

- in I)N wtlues when a cursor on the i:DIM8 display is placed at. Iocatlmu_ withit_
' the subscene where each formation should occur. For this reams primarily,

...... these units were combined as a single composite labelled CP. It, actuality, cr,
:._ was first subdivided into two el.asses (CD and OP), but inspection of tl_eON

. _':j i means for each (Table 1) shows them to be nearly identical, so that the same
::"_ color and pattern is assigned to both and the composite ks labellt!d CP (undivided),

'_'" The class (unit) labelled C, represented by a cross-hatch pattern, dominates

.....-i the Grapevine Mountains in Figure 1 and is mapped also within Tucki Mountain,
"e2i When DN means for this unit were obtained independently in a test run, these

_'2i values were determined for the two Grapevine Mountain site_ shown in Figure 4:

• :.',!

",,:_ 77.9 37.0 43.3 41.6 72.8 41 .6

5!.'i The values from this site pair do not differ .:ignificantly for the fit._t four4
_:_i bands compared with those reported for CD and OP in Table I. However, notable
_" differences are evident in Bands 5 and 7 Yet when a blue was assign_.d on the

':: screen to the CP unit (which includes a proportion of the C units) derived fromy; '

""" training sites solely at 'ruckl Mountain and the C unit I0 was alarmed as blue
".:7..
.e green, there was no strongly discernible difference i.ncolor distribution between
•.: Tucki Mountain and the Grapevine Mountains inasmuch as both blues and blue-

....f7 greens were similarly dispersed and intermixed over each mountain block. Therefore,
' it was decided to "lump" the C unit in with the remainder of CP, coloring each

:" blue, even though improved separation might have been accomplished by better

.".i training site selection and additional statistical manipulations, The subsequent

71_ field examination offered some justification for this combination in that a

_*i d_versity of lithologies was observed at each mountain, leading to "overlap" of
=:} spectral values resulting from similarities of rock types that make up formations

iif! of different stratlgraphic ages, In fact, the Cambrian (C)unit is described

. in the Explanatory Data supplement to the DVS as a complex of 14 or more formations

"i._.':'_ ranging in llthology from dolomites through shales to orthoquartzites. Comparable
_'ii lithologies comprise the younger units from Ordoviclan to late Paleozoic• i'

i-i
.'.i'_

;_
-i

I
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Likewise, an attemp r was made during the test run to dlsLine, i,flla

group of Mississippl and Pennsylvallia rocks (CM) expoqod .,t the t,aaternmost
+ end of Tuekl Mountain. These take ell a more reddish color in the false

color composite for thi, subscone, llowever, agai.n only _m;l]I.dlfforoneos
[n DN values mark the means for a training site ¢,st;iI)lJ.qh,,d;h_rJn_ the test

for this group. Whorl assigned a separate color, both the IralqJ.ng t_Jl:,.,

ar_n and aroa_ where the group do_n not occur di._play that ,,,lm (,n the
manlier, For these reasons the group wa_ included Jn th.. Cf conu. i_,qtlon b;,

coloring the alarmed areas as blue rather than being tall, d o,.t a: a mappnble
cla,.s.

, Lookin£ .at tht. distribution of Tucki Mountain uuit:_ as a whole, inspeellon

of Cl.,l indit ,_e'_ only a broad distinction bet:ween CP (blm?) ma the east arid
the IPC nnq . .."C' '.:.:its ,.rqua/blue green) on the west. The i_h.::'"_ reproduction
in Figure 2/_. _'cl).e to clearly separate the aqua front blue--gre.en b,tt this

was more apparent', d.irectly on the monitor. Most of the pixels in the Funeral
Mountains are indeed aqua/blue-green which corresponds to the dominance of

Precambrlan and lower Cambrian units in that terrain. No one color prevails

in the Grapevine Mountains, perhaps the consequence of the variability of

units in tile Cambrian (C) class; the use of the C pattern in Figut',. 5 is

-. therefore a subjective interpretation rather than a conrlu._ion from the
" statistics or color display.

The problems in distinguishing similar units in a mountainous setting

where the geologic structure is also complex are considered _urther in the
D_.scussion section,

2) There are eight classes--QAB, FPD, QSB, QCS, QLB, VO, VEG, and SIIAD....

not established or mapped in tile Dentil Valley Sheet nor shown ill Figure i. I

Most have been defined by photointerpretation and spectral data analysis t,f
the Landsat-4 subscene. The last--SHAD--is artificial and sol f-evident. ]

VEG, or vegetation, is, of course, not usually represented on a geologic

map. The only areas within the northern Death Valley, having vegetation

dense enough (in excess of 40% ground cover), to produce the vegetation

signature (light green) are around Furnace Creek (an area of trees, including

date palms, bushes, and grass, as well as a golf course, lodging, and a

resort associated with the National Park )and along an intermittent stream

channel and spring east of Stovepipe Wells.

Tile classes called QLB and QSB are picked from tile false (and natural)

color displays as areas having even brighter reflectances than their associated

lake and saline beds respectively, Both classes are nearly vegetation-free

and can be singled out by the eye in the field, although their boundaries

with the adjacent related units are gradatlonal where observed. They appear

definable mainly by their spectral rather than compositional properties.

However, they can be regarded as facies units and, as such, are worthy of

,lapping as separate entit_es. The QLB pattern (red) in the southwestern

part of Me,_quit:e Fiat is anomal.ous in that Jt sometimes appears in darker

tones in black and white aerial (vertical and oblique) photos, possibly an

indication of increased vegetation cover at certain times of year.

The units designated QCS and FPD were establiMmd by correlating reflectance

patterns in the color composites with units defined in a ),eo[ogic map of

Dentil Valley produced originally by Hunt and Mabey (1966) a,d modif,led fat

us(' in the Seasat SAR r_:purt (JPI, Publ. 80-67). The latter ,nap is shown it,
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.-i Fi_uro 6, 'l'he QUS unit rolurod d,ark grey in (:Ll corronlmndn to Iho group
of [acie_ iinitn :fllown by a diagoll,|l |irlo pattorll, Honl o1 Lhi_; fncJ.en ]].e,q

within carbonate z(mot_ amon_ the ualine depo_ita, f)u the y,round, lho nurfac(,

. of I-he oulil;n :lpl)o;Ir;l dark and l'nup, h_ wiLh f;ilt and _pnr,ge VO_PIzIIlz[oI1 ronfrJhuf:_ng
Io thi_ I_wor rellt,ctance, On I:hr, Cl,l map the dmlc _rey p:ltt,,rn tolncido_

.... wilh the QC,S tJllil eli Eli,:, nonl.h :lnd onnt o£ Cottonwc}od l_;lt]irl btlt Ihat Ullit
• , I','lilei t:o bP t-,laflnil'i_,d (}n |he Ilorthwetlt fit(It., Tht' I?P}} llniL ];l in i'oalily il

_i/l] ille play;i (I,,pm_i,t thai: forlnfl fl vPry IHllO[lth ,qul.'_-,qet, (llllllilal,'l} I_,'lCkl_(_;ll.t(,r
in r;Id,'lr i111,'1}%1!I1); on tllo color compmllto the unit h,lfl a b]lll;;h f!lll-lt, [tit

_.', urron,,_, in CI, I, ind[r:ltt,d by n light red, i_ no;lrly coiucidonI: wilh the

m,,lp di,tl'il,nlJml ;ll I;'ie, ur(' _}; part of lilt, FPI) unit J01 Ihat map J:_ ,'l('coutll(,d
fat by the, (_SI_ pattern in ELI whleh '_uF,,ge_t_ a genetic. _r c(_,_ponltional

:: kl n,;hl p,

'1'_40 II{_v c'l_lf;f;(_S_ QAB Slid VO_ wL,ref]et tl I) Oll ;1 "httllth u_ Llfl(,l" vit, Willg

:..; Lh,, ,',)tar .,_.m,_sites (>f the .'}ltb.qcc,ne. Both are lor,'0ted within the pediment

"i - anti alluvill[ wash slopes between mountain flanks and valley floors, Tilt, _1
".i I)eath Valley Shet,t ,'rod, for t:he part of t'he linage (upper eight) within
i-'[ Nevada, the Ilh'.lp in "(.;t?oJt)gy 0£ Southern Nye Connty, Nevada" (bier, Bur.
._[ Hines and C.;c,olovy llull, 77, 1972), label tile areas in which the.st unit:_o

:l ,wt'ur _I_ (,htal:,,rnary Alluvium (_AI,), fiut, th_ unit QAB al)p_,ars conspicuously

iJ:!! lighter in 1.he handaal: ilnagery and VO ._hows up as redder [11 tilt, natural
: _ color c,_mposlt:(,. Tile author posr.lllatetl tidal the QAB trail, con._ists of l ighl:er-
....i-';"_, rol_rt,d rock, d,,rived tram IPC outcrops ill the we,_terrl F'unerol Mount;sins

!,.:_ The V() unit i,q exl_lained as ouLwash from volranic (TV) unit.,-I ulaking up much
i:;:t of the e_.,'tern ._ide r_f the Gl'ape_illo HOUl-_l:ains. Both ,,;ul)po,,_it ion.s proved
i__:[, correcl '_ilt, ll rile art,:as conta{lling th( unit_ were i.nsl)erted i11 Llle field.
:Z,'_ ........
V-_]
i-<.!' 3) 'ri.,,.,u_c,, ,_f lhe volcanic oul.wa,,dtjs a series o£ volcanic r_,ck,,;of

Terti,lry age, ,_hown a_ TV on the DVS and as ,_everal units on the Ny_ L',our,lv,

:'L', Nov,ida Irlal). The .Jnits .are a mix ef rhyolite and d.acit-e flows :and pyroclast:ic
= I (lept)sil:s; most. are characterized by reddish to buff tortes. As rendered (in

,lark graven) in I.:Ll, t:he distribution of TV is gener:llly similar buL more

"::i wld(,spread tllan shown on the two geologic maps, The TV unit appears along
' the northeast corner of the Funeral Mountains where, in fact, it is nearly

:" absent on the geolo_,ir lll;Ips. This green cater also shows up sporadically
:. in other parts of the Grapevine Mountains :rod at 'l'tml_i Mountain as an obvious

mi:_classificatiorl. A pair of small isolated blocks at Paleozo].c rock off
_-' ttu, :;outheast. end oi l:he Grapevine Hountains, known locail.y a_ Oeath Val ty

:"-.:. Buries, i.'; ,:tassed as a mix of TV and C unit:; in CL1, again a partially
i-_- ,_'tlOllt,oUS ideuLification, Itowever, ill lhe lowermo,st left (SW) corner of

: ' C[,I, Lilt, gre{,n color- t)[ tile 't'V unit :lute inert is fout_d; here, the equiva]el}t
.ar,,a ,m the I)V,q i_ ,, volcanit: unit of basaltic eompositiou. Another elonp:_l.t.

t hiu dark llne .itt,,_t east of Eu_igrant b/ash c oineide,_ with +1 small basalt
l low I-(,llltl:tnt 11o|: ,qho'¢lu t)n I:he DVS,

•i Ad.j;wel,t Io tilt' TV outrrop area in I:hL' Grapevine Mountaln,_ in :l unit
el ilolllllariu(' Luffact'ou,s Hand:stone, Illlldst.t)llt-'s I and otller ,JedilllentaLy rnrks
c()ulpri._;ing tile "l'{tns Catlyon I,'ormatlon, which cm_ld not bt, singled out ,'_.,; ;i

di:mret,' trait for rla,'_,_ification. This unit (i:lbelled OI.N 'u Figure I) i,s

:_1 ightly ,,_mn_;er than I he 'LV units and probably cout;.lius material deriw,d

t_,_m the volranic._. II the Titus Canyon ;:_ :;pectrally ,,;imilar to the TV
rtwks, (1_ [u .'_llggestt, d I>y i.t,_; |ark ot? dlstim tion in I:htr i_nage, that co:lid

;icCOtllll lot s;olnl, of lilt, :_pl,arent inc_,,a.,,, _n di._Lributh_n of the TV unit
willlin (:l.l .

'
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'!"_ _ 4) Several uvula specified in the DVS map, likewise chosen as classes for

.,.L this classlfica._on, are relatively well mapped in CLI The QA unit (grey) is

,. properly located in CLI with respect to DVS as reference. The QL unit (pink)

i_" is somewhat les_ accurately defined but occurs generally where it should at
Mesquite Flat. The QS unit (yellow) appears in the interior of Cottonball

...j., Basin, where it be,oaKs, hut the eastern third of Mesquite Flat also displays
,.. this class in CL}, inconsistent with the geologic map. The sand dunes (QD)

unit, colored ¢,ra;nge,is somewhat more extensive in CLI in the areas west of

: : Stovepipe Wells and is less in areal extent to the east and north relative to

r, the DVS map. The map may be imprecise here, since the sand dunes cannot be

- clearly seen al,::nU.the eastern margin of the Flat in the color composites.
i_, Orange tones on t'_ewest side of Cottonball Basl;,.are a misidentiflcation, with

saline-plays ¢,el,_,_itsbeing confused as dunes. The standard deviations for QD

•i_ and QS over].ap i:l ,alue so that lower than average DN's for QS pixels might be
- mistaken for thcs(_(,f the QD unit.

. 5) Two units-.-PP'._(QP ia DVS) and PNM (QC)--that represent hill-forming

deposits and fan deposits respectively, have proved the most difficult to
correctly identify and locate in CLl In CLI the purples of the older PPN unit

..._. are i.nterspersed in some places with the browns of the PNM unit. The latter

_'-- appears as brown-dominated patterns having fan-like shapes along the southern

.... .[} edge of the Grapevine Mountains and again around Emigrant Wash, in good

}'1 coincidence with the DVS, It is sporadic to absent in parts of CLI southwest
_, of the Funeral Mounta.ns. There, the DVS indicates it should co-exist as an

:" older surface criss-crossed by QA deposits laid over the more dissected alluvial

_i_ fans containing the cobbles and fragments ¢often of darker lithology and/or

.,_ coated with desert varnish) comprising the PNM unit. In general, this PNMFFIQC
_'_, unit occurs in flat to tilted surfaces having little relief

i_ In contrast, the PPN unit produces hills (relief of several hundred
_' meters) of highly dissected soft sediments that in places are almost badlands-

._:i like in character. The unit (QP) is represented in the northern Death Valley
': by the Funeral Formation, described as gravels, fanglomerates, and mudstones of

':: continental origin that are variably lithified. In natural color, the units
g range from brown through buffs to reddish-grey members.

i_. Training sites for PPN were pinpointed in the Kit Fox Hills and along the
west side of Tucki Mountain (where the unit is known as the Nova Formation

:_ fanglomerate), The statistics for the two sites were combined for purposes of
'_:! classification, The DN values for each site are:

_ 1 _ 3 4 5 7

Kit Fox Hills 76.7 34.8 42.6 36.9 63.8 38.5
j-

L W. Tucki Mountain 75.7 33._ 39.1 32.5 49,1 27.1

:'_ Although similar in the first four bands, the reflectances from this unit show
real and significant differences in th,.two SWIR bands (5 and 7) between the

.- two sites. In an earlier version (1951i) of the DVS map, the unit at Kit Fox

...." Hills was different in age (TC on that map) from that at West Tucki Mountain

(QF), This difference persists in the CLI map: much of the Kit Fox Hills is

':_ rendered purple but the area at W. Tucki Mountain is shown as an irregular mix

i

i'.

,.r"
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_ 'ii of purples and browns. Both localities "appear" similar in color and topographic

_,f!! oxprosslon in the field, but PPN outcrops elsewhere show greater differences.
_.

L; [ '

!i East of Cottonball Basin, the DVS [ndlcates PNM to prevail, with patches
-, of PPN. In CLI, the purple of PPN dominates, with an increase in the browns of
i,I

,_' PNM along the perlphorv of this area of low hills, Three isolated outcrop
I! area_ of PPN (QP) appear in the color composites as rounded, isolated prominences

'i' of dlsseetod terrain located beyond the northeast boundary of Cottonbal.l Basin,

il CLI, expzessod as a mottling of purple and brown, This, in miniature,
In each is

:'!ii focuses on the probl.em of dlscriminatingbetweenmuch these two classes whose spectral
i properties are so more similar than their actual appearances in the field.
i_ Apparently, variations in slope angles and aspect for the surfaces making up
, the hilly PPN tmit can produce spectral responses that are easily mistaken for

Ii those coming from the flatter PNM terrain. This is reenforced by the prevalence
!_ of purples in the fan deposits emanating from Tucki Wash at the east end of
ii Tucki Mountain. The mapped unit on the DVS is QC (PNM) which should have been

- Ii displayed as brown in CLI.

_ii Other investigators in the Landsat 4 TM program have reported that ratio

images can distinguish among several different outwash deposits within the fans
flanking mountains that bound Death Valley. Three and even four different
outwash units, each representing contributions from different source areas

; I_ and/or different times of formation, have been discriminated. These ratio
images, produced by workers at JPL, Earthsat Corp., the University of Munich,

L_li and others, duplicate with impr_sslve accuracy the patterns of the fan gravels !

_i generalized map after Hunt and Mabey (Figure 6). It is safe to f
shown in the

_:_ say that the present level of classification exhibited in CLI does not single i
out these several fan gravel units with any reasonable accuracy nor does it

__:._,I of the gravel units was established individually during specification of training i

%!ii: sites; the more general QA and PNM units include these gravels which were simply _
-[ uodifferentia_ when combined within individual training sites, i

:i!_l. 6) Two units listed in the legend of Figure I as TN and PN have also proved

_il challenging to identify. TN corresponds to a unit labelled TC (Tertiary nonmarine)
%'t. in the DVS. It outcrops in several small areas along the southwest and northeast .

,_:i flanks of the Funeral Mou,ltains and again along the Tuckl Wash. The training
_ :_. site for TN lles along the Keene Wonder fault zone at the southwest end of the

_;i,_. Funerat Mountalns. This site was observed through binoculars during the one-
I,, day field trip as an area of light buff rocks at the base of the mountain. In

_§'. the DVS explanatory supplement, TC is described only as a multicolor assemblage
-ii of sandstones, mudstones, fanglomerates, and limestones comprising the Artist

- Front Formation. Another publication, Death Valley Geolog_ by W. Hildreth,
<; lists this outcrop area as containing tra"_-e'rtinedeposits at the Keene Wonder

! :: Spring. In CLI, the training site is precisely defined by the-sand color assigned

ij_ to it. That color appears again i,_a small patch on the eastern side of the
i Funeral Mountains, falling within one of the two outcrop patterns shown in the
i i_ DVS (the other was not recognized). On the IDIMS monitor, the sand color is

_,: evident in 'rucki Draw as well. Thus, this distinctive unit was picked out in
CLI at most of its outcrop areas.

i " "
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I The PN mlit correttptmdlt to tile PC unit in the DVS. Duri.ng the classification
! run_ the importance of lhir_ unit, which occur_l nnly at Ihe Sail_ C|-,,ok IlilltlI
+ anti ;1FOllnd I,'nrllace Creek in the study areil, wall ant appreciated, Im that it

+i

-'l wzJs not set up a:_ ,'1 el'iris to be .ought, In the field, thin omi,_l_ion wa:_ jt.lgo,t
I. h,, u serlo.s over;_ight. The PC unit in the Fnrnace Creek F.rmation, pr_dl,'ll_ly

I.ho ttingle ino;it dinl:inctive rock unil ill D0ath Valley, and ,m_, cpl]lo froqu,,liLly
incl.d,?d in ;zcenic photograph, because of it. characteristic ;lnd plml:ogonic

coloring, The fornltil:i,m is predominllrltly mudqtona_ and nnndstono_ with ;mh,,ldinnt¢,

-_I tuff., gyp,gum zmd borate deposits, that t,ogethpr are marked by brJ.pht y,,ll,_wildl-
grey, brawn, and red colors well exposed in badland_ topography (Figure tB_E),

l)cspil.e its absence as a defined class, the PN unit is exprosfwd in t:l,l

generally at the places where it occurs. When the IPC unit is assignod iltt
a(lUa color, that same color is also "alarmed" in terrain near Furnace Cr,,(,l<
and in the area within tile Salt Creek Itills. This would seem it1 imply that

spectral reflectances for PN are similar to IPC. To test this, DN values w,,rt.

later taken within small training site polygons astride PN outcrop areas in

=! _he displays of individual bands on the IDIMS monitor, Tilt, average of 5 such
readings for PN is as follows:

i Band
=!,

I I 2 3 4 5 7

l

! Av. I)N Values 114.5 60.4 75.3 65.3 116.6 70.5

_:=' •
':I These val.,,.._are quite different from those of IPC and PCC units li::tod in Tnble I

No ,_xpianatlon can be offered to account for this "false alarming" of aqua

i,ixels indicative of the mountain terrain units at just those atolls it, the

•._'-'-' wllley where the few PC-dominated hills also occur.

Note that the aqua color also occurs at several places along the southwest

edge of the Kit Fox Hills and the fans to their northwest. In the field,

several exposures in tile QP (PPN) units making up these hills were of notably

brighter, more buff colored sediments. These, no doubt, are spectrally cimilar
to the PC unit.

7) A major structural feature, the Furnace Creek wrench fault, is defined in

the geologic map. Its presence can be deduced in CLI (and less so in several

of the other class maps) but its trace {s faint. [t cuts diagonally through

the map downward from left to right, passing through the image center. Visually,

it affects the color patterns by sharply truncating the purple PeN unit against

the orange QD unit; further definition is afforded by a few ague ptxels repre:,t,nting
the but[ lithologic ph:tse i.n PPN. 'rile Keene Wonder fault, along tilt. southwe;_t

edge of the Funeral blountains, is nebulously expressed in this and ot.her cltl,.s
maps e>.cept where its presence might be inferred from the juxtaposi! ion of

ague/blue pixels against other colors, especially in maps containing band,_: I,
5, 7 inp.ts.

8) Foil.wing completl.o, of the series of classifications described in

: this section, two special cl:l:.:_ificat:ions were applied to the Cl, I d;l[;l st't tO

, test (l) tht, potential imI_rovement in map quality through a "smoothing" oper_,t ion,

and (2) tht. relative efficiency of a second type of classifier, The re,,mlts
I
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a,_:., dopictod in Figt|ro 7,

_ The claunif[catto, nhawn in Figure 7_ lllJlizo:, I11o 1DIMS fmwtton RECLAS,q,
The function chang,)n th,, DN (grey level) vale,, .f "t pixol I:o thp DR (grey
level) val.uo occurring maul: fr,,qu(,utly i;I Iho pixol I-lPJghlmvhnod, 1'hit_ in
accamplinhod by dofl.ning a moving window with ,.hi n.mh,,r dim_,n.ion_, (i.n thin

,-. cam., a 3x3 ptm, l array) shout: Path data point: (pixol) and ilO'ilU). I,i,, froqlwncy
,.. ,-if f, cctlrl'ol3CO (if oath I}N valet, wit:hill thai willdow, 'l'ho eo,,,",,r _')(,J_'t Jl_ I:ho

; witldaw {It a_.iKt|od a r..w valm_ colllputo(I from Iho ch()n(,li I_lnlllpli(:ativo w{){ghl_t
J" hy which froquone]on aim |nvroarlod ()l" do(,roa_tod, Th(, (,ll(I Iwo(hwt _ll: l]1tlt

... .moathlng (IF avera_)il-I_[ |it I.'o IIo|t,fll? (lilt" Id'_l'ly (If l[IO I[ll.ticlatll,1][[,,d [ltROIFI

.-. within a claus bol_lldary) givltlg r(tl(, I(_ all aDpavonL' {lRprOV(,lllOIIt ill /l{'l.'lll'/tl'.y,

:. Innpoctl,m of I_{gul:o ?A m,(,mn to e(mfirm thin r(,mltt, do_plt,, t l., ropla,_,,mvnt
of lint.at class houndario_ with hl.('ky _u- ,]aggo(I I_oull(l.w{ol_ t:hat rolmlt fr,ml
tim _;quaros formed liy the wlnehlwn.

.' 'gilt, map ).era,rated far Figure 7It u.e, th,. RECI,AB8 proced,t¢._ a8 welt, q,._wew, v,
': {n tile CLASI,'Y star, a ,nlnh.um distance cl ash ! fief ,;ubat [tnto_; tar the maxJ.mum
)-- l_keliho.d classifier normally used in th[_ step. 't'he '_unction MtNDt_T works
_: on the taame TSSELECT or STAT Hl:atisl+ictt file that was developt.d fr, a tht' ')OIIle

training sit.es used in tile initial CI,I procedure, Uomparlson oi: the l,'it.ure 7B
#" map with that of 2C shows, frt_m visual exantlnation, that the MINI)ST re!quit
..- yields ._ome ,_imilar class distributions _,_ CLASFY but also iutr,_duces many
"" significant mluelassificatlouu, Prominvut examptet_ include (1) hnproper h)cationu
- of the TV unit, which largely disappears '.ithin the granevin<., bh'.,untain. (ely

-'. to reappear in draws and wasln_s along mountain flanks, (2) notab'" redlstribuLi.ous
; between the ePN (purple) and PNM (brown) units which for the mo.t part are now

} incorrect, and (3) disappearance of aquas and blues from much of the mountatno.s
j,,-. terrain and reappearance of the aquas [n patterns within the ,:alLey,

_: Tile refined classification map shown i.nFigure 7A is judged to be the
optimum in t(,rmsof "believability" produced in the CL series,

" 9) Before leaving the CLI effort, one more r,._presentationof data quality is

in order. An insight into the degree of separability among various classes

can be gained by inspecting scatter plots for each cla0s, Typically, the
plots show the position of each class in 2- or 3-dlmen:,!.onalspectral space,

with each dimension set as the range of DN values for a band or channel of a

multispectra[ sensor. The mean value of the spread of DN values [or each band
_, is plotted o11 an X) Y (and Z) orthogonal axis diagram. The covariance between

bands defines an ellipse or ellipsoid centered on the mean point,

On IDIMS, the function STATDP uses STATS data to generate a ptlnter pl_t

for 2 and 3 band m.tltispectraI,data. The plots for DN values from two different:
bands, using the TSSELECT statistics compiled for CLI) are shown as Figure 8A

and 8B. The first is produced from bands 3 vs. 4; the second from bands 2 v,,_.

7. In both cases, most of the classes plot close togeth,_r in spectral space.

Only classes 3(SHAD)) 4(QLB)) and 19(QSB), and to a lesser extent 20 (FPD) are
discretely separated both from each other and tile remalnil|g, more closely
cluuLt, rcd classes. The classes for the Band 3 vs 4 plot all align along a
straight line (not shown) and have ellipses with narrow minor axes; those for

{ Band 2 vs. 7 deviate from a single straight line and are composed of broader
' ' ' eellil)sea. These ditf._renceu are _ndlcat_v of the degrt.e of autoeorrelation

I
%' !
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(or redundancy) between bands, Bands 3 and 4 are strongly cross-corr_lat_d;
Bands 2 and 7 are notably loan no, Thln _,.oncl.unlon in supported by evaluation

of nora,, of the TSSEI,ECT _tatintic_., which are not recorded in thln paper.
i

CL2: Two qu,?ntiona can be posed after connlderation of the informatJ.or, gl_.aned
T-_r-_m the CLI map:

(1) It_ the accuracy of clean definition and location improved if all plxels
in a subacone are included in CLASFY instead of the resampled subset?

(2) Can more bn ae_,n and interpreted by enlarging the image (or in effect,

using a el:ill smaller subscene)?

To answer these, a simple modification of the CLI procedure was executed. A
subset was selected from the test scene to include a 700 x 730 pixel array

centered on Cottonba11 Basin; this array was not reaampled, i.e., it contains

all data points. Applying the same TSSELECT training sites and derived statistics,

this subset was processed by CLASFY and the resulting classes were assigned
:_": the same colors as CLI. The image so produced is shown in Figure 2A. Changes

_ in image content are summarized in this way:
;f

°If') 1) At first glance, this new image appe,rs to be just an enlargement of the
".?, equivalent part of CLI. llowever, careful scrutiny shows a finer detail within

-_:} class patterns and at their boundaries and some small areas are identified as

; containing, classes not evident in the larger subscene. Thus, inclusion of all

_ _ pixel_ leads to modest improvement in class pattern sharpness and local detail, '_

i but this _ncrease is not significant Whether the use of all pixels is justified 'J• }

• ' in view of the need to process much more data, will be explored in the Discussion
: Sectio|l.

2) Th_ most notable change in CL2 is the recognition of vegetation in places

not ea_'ily seen in CLI. The ligP.t green of VEG now appears along several

boundaries (:;till not obvious in Fig. 2., but evident in full enlargement)

between units making up the saline and associated deposits. These are plausible

locations in that the vegetation patterns occur at contact zones where ground

water is likely to surface.

3) It was hoped that the higher spatial resolution of the full pixel array

would better define the different outwash deposits extending over the fans.

Overall, the improvement was not conspicuous, although some streamer-like

patterns along the fan surfaces were better resolved and one color frequently
dominates. Some differentiation between PPN and PNM units in areas where

purple and brown intermix does happen but does not lead to notably better

definition of the two classes. Of special interest is the presence of blue
and bluegreen patterns on the fan surface southwest of the Funeral Mountains.

These seem to tie into source areas containing PCC and C units and thu3 represent

more recent contributions to the outwash deposits. Bluegreen dominates in the

Tucki Wash as well; the drainage in that draw originates at higher elevation
where PCC is the principal outcropping unit.

4) Nortl_ of Tucki Wash, there are patterns of white which lie within the QA

unit. These do not appear when the QSB unit is alarmed but are evident when

! QAB is alarmed. They are therefore identified as alluvial materials containing
; a F,igher p:_,rcentage of llght-colored rocks.
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5) The aquao[ the Furnace Crock (PN) unit is more readily seen in the
, val. loy topography in CL2. The positions thus pinpointed coincide quite well

with the DVS map.

CL3: As expected, all 21 classes specified for CLI arc, present in this 3-
; band MSS-approxlmat_on case. Classes making up mount:Jin terrain are rather

poorly segregated in this version. The aquas and blues depicting the IPC
and CP units respectively are crudely clustered in the western and eastern
halves of the Tucki Mtn., but some intermixing occurs and the blues are

_ concentrated (incorrectly) in the IPC area. _eparation between these units
is even poorer in the Grapevine-Funeral Mountain blocks; splotches of peach
(VO) also are found in these mountains. In this, as in all other supervised

i.::. and unsupervised cases discussed in this section, the uplifts are characterized 'i

by a speckled pattern of colors suggesting considerable misclassification. ,'i
The Tertiary Volcanic (TV) unit, in dark-green, is fairly well defined along

"" the east side of the Grapevine Mountains where it occurs; this color is :i
noted further east along pediment slopes and in the VO outwash, as would be

expected from redistribution of weathered materials into the northern end of ,_i
the Amargosa River valley. Presence of this color at the east end of Tucki ,i

: Mtn. is, in this instance, an incorrect identification. The actual units !i
there are late Paleozoie sedimentary rocks that have some spectral similarity

-,, to the TV unit.

_. The QA unit once more has the broad distribution observed in the CLI

', case. In general, most units within the valley floor and mountain flanks
have a more splotchy character than they show in CLI, implying a greater

i_f" degree of misclassification when the Bands 2,3,4 combination is used. Note i_i--

_", in particular the presence of white and pink pixels in the red QLB pattern

i'_ in Mesquite Flat and the widespread interspersion of pink (QL) and yellow ,:

i-i. (QS) pixels. The unit labelled PPN (purple) has a more limited and scattered
" distribution in the CL3 map. Only a fraction of the image corresponding to _i

::_. the DVS map unit QP is e.:pressed in purple. Purple patches are developed iI
elsewhere in places where this unit should be absent. The areas noted as
PNM seem somewhat more sparse than in CLI. The areas classed as QD (dunes)

;_" appear more accurately fixed in CL3 than in other classifications. The FPD
unit, however, is more poorly defined in CL3. At the northwest end of Tucki
Mtn., the increase in area occupied by QRS is not realistic, in that this

unit is almost certainly absent anywhere on the fan slopes. The class VEG,

in light green, is confined to patches around Furnace Creek and a long patch

_. around the Jaywalker Spring at Stovepipe Wells, near the CL3 map center.
.= This may be the most accurate assessment of the very limited distribution of

vegetation in this subscene.

_' CL4: Overall, the CL4 image yields a distribution of classes more like that
o--f-CLlthan of CL3. However, several significant diEferences are evident in

the CL4 map. In the Tucki Mtn. area, distinction between the [PC and CP

units---not particularly good in the CL2 case--becomes even less meaningful
when only the blue (1) and shortwave infrared (SWIR) (5 and 7) bands are

used. Somewhat better separations are discerned in the Grapevine-Funeral

Mountain chain. Aqua and bluegreen colors mark part of the IPC outcrop area

and bluegreen is conspicuous _here the C unit occurs; a patch of blue suggests
: the presence of olleor more members of the CP sequence of units in part of

the Funeral Mountains field mapped as IPC. Pixels for IPC and C units are
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reduced in number in the Crapevine Mountains, with a corresponding rise in

.. CP pixy+Is (better displayed on the ID]MS monitor) in areas mal)ped on DVS.
Dark greens signifying the TV unit almost vanish in the CL4 rendition, The

PPN class i.s now more diffusely widespread and again is shown as present in

") areas (such as I:he ,pper right corner) in which it almost cortainl.y is
,, absent or sparse; this is especially evi.dent in the fan ,qnd alluvial

deposits al.onp, the northeast flank off Tucki Mtn. and at. the edge ,_f the
Amargosa Valley.

, CL5: For both this and the CL6 maps, each representing the standard default
: co--ndition for unsupervised classification on IDIMS, only a small number (9
"; for CL5) of clusters are generated. These are far less than the 20-21 classes

"- established for the supervised cl.assifications. Moreover, there is not a one

to one correspondence between clusters and classes. For some clusters, assignment _i....

' of a color durin S alarming causes a pattern indicative of the class given ,'i

" that color in CII to appear in CL5 or CL6 in roughly the same places as in

": CLI, but misclassified areas invariably are also alarmed in that color. Several

_" clusters, when assigned the same class-identifying color, give better agreement ;
in pattern distribution for that class as thus combined dusplte some erroneous

_f 'I._. areas also being alarmed. The DN values for such cluster combinations indicate

_'. probable kinship, even though taken together the composite DN spread may be '!

C high for the class, i_

' Units in the mountain blocks are not differentiated or otherwise effectively

-i:[" mapped in CL5. Comparison of DN values for Bands 2,3,4 in Table 2A with

'.." Table 1 reveals that only Cluster 7 can be closely matched to IPC, C, or CP ,,i

:<" units. When a blue color is assigned to cluster 7 it shows up in the valley i]
-'_.. at locatlons where I'NM is dominant. Only Cluster 6 pixels prevail i, the

-:.!=" mountains; blue is assigned to these even though their DN values are well
_"_" below those in most mountain units. :

_q
.,_ Colors associated with several valley units (mainly PNM) occur in the

___ Tucki Mtn., Grapevine, and Funeral Mountains, along with the blacks representing !]

,_- the SHADOW class defined in the supervised classifications Initially, the

Plio-Pleistocene unit PPN shows up where it really occurs but also appears

-_:: (probably as "false alarms") in many places within the rugged mountain terrain

_ and in parts of the valley, and so was rejected. Elsewhere, the distribution

- of PNM is realistic if both Clusters 2 and 7 are assigned a brown color. The

'i' sand dunes unit (QD) (Cluster 5) is more widespread in this case than indicated%

-_• on the DVS map but its overall locations within the valley are plausible.

=_.;._ The grey assigned to the QA alluvium unit recurs both at the left (west) for i

-- Cluster 3 and center of the map for Cluster 5 - again a reasonable interpretation '

..... based on both geologic map and the, false color composite patterns. 'the red !

:lssigned to Cluster 1 for QSB (not subdivided) occupies a smaller surface !
area but if Cluster [0 is likewise colored red, the result is a good match to i

: the pattern noted in CLI for QSB in the southwest part of Mesquite Flat but

£ _In excess of red elsewhere. The QLB unit, colored pink, ,ccupies much of

: Mesquite Flat but also is predominant in the (h)ttonball Basin interior wheel?

i, s_l[{lle deposits recur instead.

2
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CL6: Eleven clusters are called out when all six reflectance bands are used

in this unsupervised classification. Again, within the mountains only one !
unit, shown in blue, is present. Its distribution is different from that

noted in CLb. The PNM unit becomes slightly more widespread in the 6-band
case, and once more some areas where it is actually absent are incorrectly

alarmed. The light-toned alluvial QA deposits, named QAB in CLI, here stand

out in orange when QD is alarmed. Even though two more clusters resulted in

this 6-band case, they were not useful in designatl,g two more classes. When,
for example, Clusters 2, 7, and lO were each assigned different colors in a

test to see which class best fits the distribution patterns in CL], [he least
erroneous color combination was the choice of brown (PNM) for all three.

Thus, the 6-band unsupervised classification yields very few improvements '
over the 3 bands alone. Neither CL5 nor CL6 does an effective job in recognizing

and properly locating most of the classes set up in the supervised cases,

although a moderately successful placement of some of the valley units ensues.
It is obvious that a more sophisticated unsupervised approach is needed.

'I

CL7:. After the data and image products from the preceding six classifications
had been scrutinized and evaluated, the author was persuaded by colleagues to _;

modify the conditions under which the unsupervised classification had been _

carried out. Several analysts in the ERRSAC group at Goddard claim that they

find the unsupervised approach superior to supervised classification. This

may be a valid conclusion if a large enough number of clusters (between 16

and 64 for most cases) is initially specified and if they can be systematically ii
combined into a smaller number of clusters. These clusters must then be

converted into classes by correlating those which are spectrally similar and i'

spatially in juxtaposition or distributed such that they most probably come
from the same classes or subclasses. This correlation usually requires some

independent "ground truth", from maps, aerial photos, or famiarity with the i
scene gained from field work, in making the decisions. Thus, in a sense the i

procedure is a variant of supervised classification in that clusters are !
identified as classes after the distribution of plxels in each cluster is

determined by displaying them on the monitor and noting their spatial relations
to known classes. The statistics associated with each cluster become, in

effect, analogous to those obtained from training sites. The major difference

is that the full number of pixels believed to represent a class (or combined

clusters assumed to belong to that class) are incorporated in the statistics
employed in classification rather than just those from the training sites.

The analyst also retains the option of setting up one or more subclasses

within each class if their spatial distribution warrants this. Conversely,

new classes can be established from these clusters if supporting evidence for
their reality is found.

The ERRSAC analysts have gained considerable success in t'is procedural

strategy when they apply it to scenes in which land cover/use categories are
relatively straightforward. Terrains in the eastert_ U.S. characterized by

forests, farmlands, and metropolitan areas are especially amenable to the

approach. To test the effectiveness of this procedure to geologic terrains

IV-]82

00000003-TSA05



• IV-183



i _} ii

: i with Little ground eov_r, the Death Valley subseene was re-,xamined in this
manner:

Tile mandatory and optional inputs to ISOCI,B are modified prior to running

that function on the 300 x 320 pixel subset. The number of iterations is

increased from a to 12. 'the maximum number of clusters sought is raised from

16 to 32. The minimum distance between clusters (DLMIN) is changed from 3.2

to 5.0 DN units. The latter modifications will have the effect of "breaking

apart" each individual cluster (some with a large standard deviation) into

• two or more smaller cluster ellipses, which can then be identified as classes.
{i

After ISOCLS is re-run on the subset created from these parametric changes, ,i
a two-dimensional cluster diagram (STATPLOT) is run on several combinations

of band pairs. This plot aids in organizing clusters into classes equivalent

. to those set up in supervised classification by comparing the spatial distribution

i._ , of plxels represented by each cluster with that of one or more likely classes.

:_ To accomplish this, a cluster number is entered, into the pseudocolor (TCC) _i;
:_" display program, assigned an arbitrary color, and displayed. Its pixel dis.tribution ,:
._i is noted and matched with pixel positions in CLI to decide whether the cluster ',

i,I is similar to some class. If so, the identity can be confirmed by reference
to class mean data in Tables i and 2B. The arbitrary color is then changed

to that of the correlative class and an output map is then produced.

!r_i This reliance on data and class distribution from the supervised classification !!'to identify the clusters does not fundamentally compromise the unsupervised ._

'_'" approach. In supervised classification, the statistical parameters needed to 7

i_i establish classes are derived from selected training sites; in unsupervised,

i:_.! the clusters are based on statistics provided from the _ntire scene without a

! priori correlation with ground classes. The clusters can become classes when
;_: ' they can be identified, usually with ancillary information. That information _:

_-_.i can come from published maps, previous classifications, and other sources. _'

:_ , The Bands I vs 5 pairing appears to achieve effective separability, as I
_£_ do I vs 7 and others. The plot of the means for Bands I and 5 (in Table 2B)

and their covariances in X-Y space gives rise to the cluster diagram shown as

Figure 9.

A perusal of the CL7 output map (Figure 2B) leads to the following observations:

i.< I) The definition of units in the mountain terrain is still generally

_-,-" poor--inferior to previous supervised classifications. No well-defined concentration

'_ of color indicative of Precambrian and Paleozoic units is apparent. The data,,

. _. in Table 2B show the IPC, PPC, and CP units to have a wider dispersion or
: spread of values in the classification than in the others. The aqua (IPC)

; seems the only consistent and ubiquitous of the colors indicating mountain

: terrain units. However, this color is also found in two areas near the upper

, right corner of the image, roughly coincident with the outcrop pattern of th_

TV unit. The TV unit itself (Cluster 17), shown in dark green, does appear

as a narrow pattern along the east side of the Grapevine Mountains. The

upper limit for PPC (Cluster 4) lles beyond the range of DN values for that

class obtained from the CLI statistics, casting doubt on its assignment to

•' that unit except for the spatial location of many Cluster 4 pixels within PPC

_i "territory". The dark bl,.,_associated w{th CP occupies some of the pediment
,.

i'
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TABLE 2B

UNSUPERVISED (EXPANDED) CLASSIFICATION

Band 1 2 3 4 5 7 Probable

Class DN Values Unlt

1 157.1 77.0 94.5 79.9 127.6 82.0 QLB

2 69.7 31.9 38.3 34.5 72.2 41.0 VO '

3 93.0 44.5 55.1 47.9 7q.6 47.2 QAB I

4 94.7 50.2 67.8 64.1 136.9 76.4 PCC

5 (_1.6 26.0 28.6 24.2 49.9 27.0 OP

6 75.8 36.6 46.3 42.7 93.4 52.8 C (

7 ...... Hargin ;LI
8 166.7 81.8 100.7 84.5 70.1 27.5 QSB ,

9 70.0 30.4 35.3 29.7 43.4 25.0 PNM

i0 86.2 39.8 48.0 40.7 64.2 36.5 QA
I

II 99.4 49.0 61.1 53.7 88.2 53.7 QD _I
.I

12 54.6 20.3 20.0 14.5 20.6 I0.9 SIIAD 'I

13 77.6 35.4 42.8 37. i 62.5 36.1 PNM i'

]4 117.9 59.6 75.2 65.3 107.0 67.2 QL ,

15 69.1 30.3 35.5 30.7 52.7 30.1 PNM i

16 84.3 39.8 49.5 43.5 77.2 44.9 QA :

17 81.4 40.7 53.0 49.7 !08.5 61.4 TV

18 61.4 24.3 25.9 20.1 22.0 12.5 SHAD

19 79.0 36.7 45.0 39.8 70.5 41.0 PPN

20 107.4 53.9 68.0 59.3 98.3 61.0 QD

21 67.2 28.4 32.0 26.3 32.8 18.8 CP

22 94. I 44.8 54.2 45.2 36.0 15.9 FPD i

23 86.2 42.4 54.1 48.9 90.9 52.2 IPC I

24 52.1 18.3 17.1 1I.3 I0.7 5.5 SHAD ii
25 78.3 35.3 41.9 35.5 51.8 29.6 QCS I

26 127.5 65.2 83.1 72.3 119.6 74.8 QS

27 70.8 31.8 37.8 33.5 60.3 35.0 PPN

28 93.6 43.7 52.9 44.5 68.9 40.2 QA

29 89.5 45.9 60.6 56.5 115.5 65.1 IPC

30 58.4 23.4 24.8 19.9 35.7 19.2 SHAD(?)

31 75.7 35.8 44.5 40.6 78.8 45.3 PPN

32 120.0 57.7 70.4 59.2 70.2 32.6 FPD
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area .orth (upper right) af the C,rapevine-Funeral Houutaln_, ,_u_gestlng rhat
there at: lo.qnr Cl.stor 4 i.tJ mlnidentifJpd ns belony, Jng to CP when, in fact,

it mip.ht be c'lonpr to valley units (nee below). There in widenprpad occurrence
in tile mountalnn of the purple color associated with Ihe PPN unit. This

color occurs slmradJcqlly within one outcrop area of PPN (west side of Tuck[
Mtn,), but presence within the several other r,lngeH i._ .another ml.sclas_ificatLon,
Ilowever, the purple pattern shown Lip again in the hills Ilor_h and we._t of
Furnace Creek, wherp the ]977 guologle map (DVS) indicates QP (PPN) to be
present'.

2) The valley units are better defined, for the most part, in the areas

where they are known to occur. QA appears west of Mesquite Vlat and again
south of that area and in low washes north of Furnace Creek. The conspicuous

south-trending, light-colored outwash deposit (QAB) is distinguishable from

QA by its higher values of Bands 5 and 7 DNs and is again set apart as a

separable unit, shown in white. The PNM unit (in brown) is found generally
where it is supposed to be but its distribution is excessive in the Amargosa

Valley. None of the PNM Clusters 9, 13, or 1.5, when colored peach (VO) instead,

• effectively reduced the brown in the Amargosa Valley without introducing the

VO unit into Death Valley where it is likely to be totally absent. Cluster 2

is exclusive to the Amargosa Valley; it is alarmed there in grey insteaJ of

: peach. The orange associated with QD is distributed in generally the same
i

areas noted {n most of the other classifications; in all such instances this

unit is more widespread than indicated on the DVS map but the Qs unit of l:hat

map is closely defined by the morphological expression of the sand materials
as distinct dunes.

.i

3) The units withes Mesquite Flat and the salt flats in and around Col.tonwo_,d

Basin tlre ;I11o well defined. The QL unit (pink) appears where expected in
Mesquite Flat but [t shares some of the area there, as well as at Cottonwood

-! Basin, with QS (Cluster 26). Cluster I when shown in red corresponds to QSB

' but occupies a smaller area than in CLI. Cluster 8 is quite different owing
to the much lower values for Bands 5 and 7 digital counts. This cluster

defines the small areas (in white) along the east perimeter of Cottonwood

Basin. Not only is the materlal for QSB in those areas spectrally different
from that making up C]uster 1 (mainly a difference brought about by t,luch

greater amounts of saline minerals relative to playa clays), but it remains

largely free of any vegetation cover during the year whereas QLB seems to

vary considerably with the seasons owing to vegetation changes. Both Clqster

I and 8 materials are different from those making up Clusters 22 and 32.

When pixe|s representing Clusters 22 and 32 are displayed alone on the IDIHS

monitor, they concentrate in the parts of Cottonwood Basin coincident with
FPD units (light red) [n CL1. Cluster 25 pixels largely coincide with the

QCS unit defined in CLl.

4) The net result of thi,,; 32 clu_ter unsupervised classification can best

be surmised from inspection of Table 2B in which those supervised classification

,,nits presumably recogt,ized in CL] are listed. Classes establ [shed for CL|

that are not recognized in C|.7 are: C, TN, PN, and VEG.

Ratios and PCA: Before cmbarkiug cm a discussion and evaluation of the information

i presented in this section, a brief analy,._is of twn other image products is
i now coll,,:ide retl.
i

i

:
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The first is :, color ratio componito made by combining (superimposing)
ratio imagoB for ba.d_ 5/7 (projected a_ rod), 3/4 (green), and 5/2 (blue),

: shown in Figure IOA. The IDIMS function DIVIDE which croatPs each rntio

_' image (which is then stretched for higher contrant) does not produce

numerical output of ratio valuc_. Them, can be roughly oHtJmatod from tile
supervised 6-band data in Table 1 to aid in determining po,nible rolatlonnhlpn
between resultant color pattc.rnf; and classes and geologic features reeognlzod
in thc, _ceno (Table 3).

Podwysocki et al. (1982) used ,he flame ratio and color combination a,
above to characterize the spectral response of materials comprising the
mineralized/altered geologic units and associated vegetation in the
Marysvale, Utah mining district, They noted these associations between
colors and rock and vegetation classes:

Cyan to = L/men/re Green .... = .Spectrally Flat
Light Blue .....

" Yellow = ArgillltlcAlteration Magenta = Pine/Junlper

.. White = ArgYll/re + Limonite Deep Blue = Sagebrush

:.' Red/Orange = Grasses

._ These color-class associations may offer some guidance in interpreting thei

,;' Death Valley ratio composite but the arbitrary contrast stretches, the

- differences in rock materials and vegetation, and other factors ii_troduce

•_ uncertainties that limit the extrapolation of the Podwysocki classification
to this Death Valley scene.

The vegetation near Furnace Creek, around the Jaywalker and Stovepipe o

: Wells, and wells and springs in northern Mesquite Flat all are rendered in
i the red/orange colors predicted from the llst above. The yellow tones are

present in places where argYll/tic weathering products are compatible with '
the inferred geologic materials present in the outwash deposits. The cyan

color in the valleys may express the occurrence of l/men/tic pigments in the
alluvial deposits but this color also appears where the geologic map

" indicates saline crust and other evaporite deposits. The magenta pattern

_, around Cottonball Basin corresponds in large part t carbonate and salt units I
_:' on the Seasat geologic map (Figure 6), representing both light and dark

;' reflectance units evident in the false color composites. But, magenta is I
., also characteristic of the PPN and PNM units and of the IPC unit on the west I
:.- side of Tucki Mtn. as well. llowever, mysteriously this color is not evident

in the outcrop areas along the southwest flank of the Grapevine Mountains.

The deep blue associated with both QA and QLB unit locations around Mesquite
Flat may represent sagebrush (noted in the field), as suggested from the list

above, or more likely is indicative of the spectral responses of the surface
materials themselves. All of these tentative identifications are speculatiw_

and must await more st, dy.
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TABLE 3

BAND I{ATIOS

I

I 1.80 I.15 1.58 QI)

2 1.79 1.37 1.62 QI,

3 0.68 1.45 1.83 SHAD _

4 1.61 1.19 1.56 QLB _

5 2.10 1.08 1.67 VO

6 1.85 1.16 1.57 QS
I3

7 1.80 t. 16 1.69 PPN ,j
i'

8 1.65 1.17 t.70 Vt_l

9 2.09 1.12 1.79 IPC !

10 2.26 1.11 1.80 PCC i

11 2.25 1.09 1.75 C
CP

12 2.30 ]. 10 1.70 OP

13 1,66 0.87 2.13 VEG

14 2.35 1.03 1.74 TV

15 I.68 I.19 1,69 QA

16 2.05 I.14 I.13 QAB

17 2.12 1.10 1.75 MP

18 1.40 1.24 1.93 QcS

19 0.72 1.20 2.49 QSB

20 1.23 1.21 2.18 FPD

21 2.00 1.06 1.93 TN
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Figure II contains the black and white images of r,ach of tlm six numbered

Princlpnl Componentn prnauced by the KLTflANfifunction on IDIMS, The first (l)
component image it_ennontial,l.yan oxpr(,nr_ionof the relntiw, al.bodon of the surface
mnterin]._ and cln_t1,,n, In the nocnnd compononl: (2) J.ma_:e,v,,_etatlon _n singled

out by itn llghl: grey tone wh_l,_ name of the I}r]gllt¢,nt tenon in ,-'omponont ] now
are quite dark, in component 3 the l.i};hl: t,.mt, n in t.h,, mountain torrai.n a_rr,?npond
to nhadown (dark in COmlmnonl: ] and larp,,,ly r,,m_,v,,d in the rali.n il,mp,o) while l:h¢,
_aline and alluvial dopnnitn become dark and thane idontlf_od nn FI'D ;Ippo;Ir in
cnnnplcuoun light tenon, Tile l.i_,ht outwat_li dope,it QAB in dofJ.n(,d by (i dark t,3ne
and the PNM un.lt went nf Tucki Mtn. in ,.xpr(,n,md by n light l:nn, (darl_ in e,,_,,ponout
l), The hil]n compnned of the PPN unit ar(, omphaI_Jz(,d by a t_poeklod lon_, paltorn, I!

Still, different tonal pal:t(,rn:_ emerge in compollorlt /4 aud 5 {reagan whore detailn
of the halt flat_ are brought out by eont:ra_ti, ng light nnd (lark ton(,n and ,.n,btlo
drainage patternn on the podlmont:s now stand out, Component 6 _dlnw_ mainly "noi,_e"
effects,

In Figure lOB, the images of the first three components have been combined 'l
into a color composite .sing the _:olors shown. The. version reproduced in the ,:
figure is not as varied in color contrasts as the image itself directly on the _
IDIMS monitor, where the vegetation shows as a more pronounced green and the QAB '"
outwash deposit takes on a yellow-orange distinct from its surroundings,

'l

-' Neither the ratio composite nor Principal Components images prove especially

helpful in discriminating different rock units in the mountains, Their chief
contribution comes from the color patterns evident in pediment and fan slope
terrain and the flatter valley floor.

i

Quantitative Measurem,:nts of Accuracy:
I

Presumably the best determination of accuracy in geologic units mapping is Ii
to match the computer classification units map with the corresponding geologic

map. This is true provided the units on the classification map bear a one-to-one
relation to those on the geologic map and allowances are made for surface cover
that differs from the units as conventio---nallymapped or consists of non-geologlc

features and materials. This approach to accuracy measurement will be pursued

later in the present study, Here I report another quantitative measure that
represents a good approximation to the estimation of accuracy by means of a digital

matching of classification units and geologic maps.

The calculations are here referred to as the back classification method,

: Two sets of polygons within tile image are established: (I) the original training

sites, with unit_ chosen from geologic maps, image interpretation, and field

: study, and (2) verification sites, composed of units mapped by the classifiers
°. and named according to the units expected at ,each site after utilizingthe same

controls stated in (I). The verification sites are outlined on the image in the
same manner as used to select and define the training sites. Errors of commission

are then determined for training sites and for verlficatiou sites, In effect,

the procedure computes the percentage of class X in the training or verification

polygons (Figure 4) assigned to that cla._:s, The percentage is just I00 times the

:_ ratio of the number of plxels identified as X from the statistical parameters to
- the total .of X and non-X pixels (non-X representing all those from the non-X ..

classes confused with X).

4

.. IV-189

00000003-TSA] 2



RPsult_ of l.he_ipcnleulationn are recorded in T,Ibl_,4, The ,'I_I_,_ll,',it|_,_i

by symbol ,:,-+lllpr+_o Lilt' row_, E;Ich _,f Ptl++ fotlr COJltlnFIH COll.Si:ll+.q ,If I+Ol.'Ct'lllll+;t'rl
l:m + training nitpa (loll sol _¢ numl_orn) and l,_r verlficalion ,_it,,_ (ripht _.,t).

'the first _lld HoColld c,tltllnllH If'pilL lho clara ,_blainpd LIHilIJ _, II1,* lll;l_gilllt:lB li1¢ol ih,,)d

clal_ni¢i,,t'i the flrI_t c,_l.lllllll d_,llt_ll,n I.l_, l_t:ltldard v.I;la_xifical:ioll v;llll_,n and th;,

t_,*t_Ovltl I rotll:tl tilt' p_,rconl0gon ilft_ll_ Ihp lil;',CI,AS pr,,r_,dur_.. Th,, I1¢11111,;ll'l','ltl_;Iqlla;lll

dc,ncrlbe_ Ille third ¢nld {.tml'lil¢'_alulllnl_which how_,ver COll_l_lll,,I p,,l'c(,lllol_,_,ll_hl;lill_,,l

flonl llllrlillltllll,Ii_t:ancp cl_itlnil'_i_l, rent,lie, Avl,Fogp/l llrl,_'Olllplll_f,d,'iililt,l,,,fI_,IiI,_I

111o t.al_io; lilom_ ill the llln_illlllnlIiltol]h(md e_l,11_llltl;11",,fnrl.ll_,rmtl_,I]vi_l,,,lilll_

p,,rca,t_lag,,for ]3 v;ll.Icy c l_lam,_ elm (inlolUll;i_11 f'I;IitI_l,;i(#,_¢'Iml[11g tqlAD,'llld_I !ili
VEt:).

,qlX _,,'IIO1";iIohzl_,l'V;lli_llll,';IIIlh, drllWll frollllht,:l,,d,l[;ll

I) 'rh_,"imrlt.y '' of lh_, Ir;litllilh,e:ilc,:_i_ llre,'llt.rLII;IHll_at of lht, v_,ril'icalJ,u_
,qiit,H,

. 2) Tl!e. maximum l ikollhood c la._._ifi_,r i:_ c.l¢,arly superltn" I:o Lilt' ,llnimttm d l.ql;lllCt,
classifier ill thie_ sLudy,

: 3) The FIE(II,A8 funct ion signl flcant ly improve._ accuracy,

0

'[ 4) The accuractes for valley geolog].c units i_; 2 I.o 3 times better th:tn far
those i_: mountain terrains.

5) Accuracies for several inounLain units are "ridiculously" low, Reasons for

this art, extreme variation in slope and aspect and presence of slaad,,ws in tilt,

polygons even though care was taken to avoid these during site select [t,n.

6) The veriflcatlon values for classes TN, QSB, and QD are anomal.ousty low

• .because most of the area actually occupied by these units was "used up" [n tile

training sites, leaving little more to be verified by extension; VEG was eliminated

,.'.ompletely because the class was found almost exclusively at the training sites.

D.is..Cussion o_f Analytical Re.sults:

One conclusion stemming from the Death Valley study stands out as paramount

in assessing the impact of the results reported in the previous two sections;

[n spite of the anticipated improvements in accuracy expected from the supt,rior

F.c,.sq.I_uL:ion, broader spectral coverage, and greater sensitivity inherent to the

Thematic Mapper, the actual measured accuracy for TH was in the same narrow range

(35-60%) recorded for MS8 data from the earlie [,amlsats. Of course, the specific

measurement techniques applied in this paper ¢' .,.or in general from those reported

by Siegal and Abrams (1976) which are typical of. the few accuracy determinations

for computer-baaed classification to be found in the open literature, However,
both those results and the accuracy values given in the pre,._ent study are based

on measures of errors of commission between geologic (stratigraphic) map units
and sought-after equivalent units recognized by remote sensing from Landsat. 'rh,,

two sets of results are therefore believed to be comparable.
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,slid queHti.,m in "Why wnn there no significant increase in accuracy attributable
_o the TM improvement?", A t_pveulntive annwer is put forth, as one reprenentlng
_l_e author's hunch-_almo_t ennvietion--b.t .no an yet wltho.t nuh_tantlve proof,

Stated succinctly, the rear,on may well bo that there in qn intrinsic .pp,_r limit
to accuracy that is lar_wly independent of nennnr quality or oi_lc_eney. The
limit, is net inntead by goolo_:ic conntraintn or factors, Thorpe were alluded to

in the introductory noel:ion of the paper ,and will be expanded upon in toe next
' paragraphs, In ensenc,,, they relate to fundamental dlfforencen between.geologlc

maps (and the units theroln) and romute lion,ring-derived elas_liflcation maps (and
_he nurface-doulinant unitn tiles, d.pict),

A publiMled map, such as the DVS used to establ, ish training sites, would
seem a strong condldate as the "ground truth" _eference, llowever, it fails to
provide an objective basis of comFarison, for the several reasons already touched
upon in this paper and reconsidered herr:

l) As mapped, geologic units are tlme-dependent or stratigraphlc in nature;

remote sensing units (specified classes) are a mixture of surface materials and !

features that a) can be visually tied to geologic map units as expressed by outcrops,

correlative soils, tap,graphite expressions, and vegetation associations, and b) i
are separable by differences in multispectral characteristics.

2) Despite variations in rock composition, texture, age, and degree of surface
weathering or alteration, many different geologic units show remarkable similarity

in spectral reflectances even if measured under controlled conditions in the !I

laboratory or on tile ground. Significant differences may only exist for fresh ij
surfaces; the spectral curves for different rock types reported in the literature
usually fall into this category. Convergence of soil types with maturity in a

given climatic, regime, mass wasting redistribution, superposition of vegetation

across llthologic boundaries aud other factors serve to modify diverse geologic i
materials as seen at tile surface, such that they begin to resemble one another as _

they come to share in the homogenizing conditions prevailing around the rock/atmosphere

interface. In the Death Valley area, as in much of the desert southwest, rocks

of many types tend to be covered with "desert varnish"--an alteration product !

rich in silica gel, iron, and manganese derivatives. The spectral response of
these units is governed more by this coating than by the particular lithology of
a unit.

3) Accuracy must necessarily decrease in dissected terrain consisting of steep,

variable slopes whose orientations (aspect) may well "box the compass", unless

corrected for by normalizing the spectral reflectanees to a reference (usually

flat) surface. The statistical values derived from the training sites for each

class will apply only to identical terrain. Any other parts of the classified

scene containing this class will likely consist of assemblages of surfaces with 1

different (non-equivalent) averages of aspect and slope angles. The deviations,

which can be no,i-systematic, will be considerable and hence a prime source of
error.

4) Accuracy is strongly conditioned by the "purity" of training sites. Those

chosen for this study show, at best, a maximum purity of 79% (p29). At Landsat

scales (effective resolution), sites large enough to provide adequate statistical.

control will almost certainly hi, both stratigraphically and spectrally heterogeneous.

A specified stratigraphic unit in reality may consist of members with varied

lithologies in a sequence that might lie entirely within an area of exposure
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which i..q of ground-equivalent pixol din;caslons. This may be further compllcatod ,!

by ntrnctnral conlplexlties. Units within the eastern Tucki Mtn. ,are sew'.rel.y
faulted, wi th ropt, ated :_oct i.on_ of diverse I ithology that will fal I within any
roam.m;ibl y-hi zod training si re.

5) B,,'a... m. lti,_pPctral ima_13n and derivati.w_ elansl, fications ,.t:mally pro.3ent

;1 lieu perspective that tends to focul_ attonti.on on certain characteristics of
rock .ni.tt, not ovldont from air or field inspection, those can frequently be
dofinod ;is now remote nensin_ units. The units may have some equivalence to

mappabl_ attributes of the goologic/stratigraphic units but often represent surface
:_t:;itt,_ or conditions without direct counterparts among those units, Tile remote

sensing units are wllid, however, as map units insofar as they can be recognlzcd
as meanlngfttl, either in some geologic sense or in terms of a non-geologic class
of material_/,ffQects/foatures of signfleance to the geologic purpose underlying
the mapping. By introducing classes not already defined on the reference map,
this "usurpation" of available surface by these "extra" classes must inevitably

reduce overall accuracy. This has happened in the CLI and other classifications

by inserting such units as QAB, QSB, VO and others through photolnterpretation

and by adding units llke QCS and FPD from other maps. Likewise, when units such _,
as OLN are not found, or PN is overlooked, or various lithologic units of Paleozoic

age are not differentiated, the accuracy is bound to diminish even further, ii
i

If this interpretation llolds up and indeed expresses a truism, then what

are the consequences and is there any recourse open to solve the problem? The

response to the first query is that geologists may simply have to learn to live

with the below optimum accuracy of remote sensing classification maps and use _!
t-hemmainly as reconnaissance level aids, or, if the geologic community judges 1

accuracy level as too low for acceptability (as I believe 50-60% to be), we i_

will just abandon them as surrogates for geologic maps and continue to rely i
m the more conventional methods for making maps with suitable accuracy. A

more tractable recourse will be to consider the classes to be remote sensing.

units only--valid as indicators of what is actually at the surface. With this F

ph---il--osophy,the geologist must then learn how to utilize and interpret remote

sensing unit maps per se. He must change his attitude and way of thinking about
surficial geology by adopting a new framework based on surface manifestations

alone. Eventually, the geologist may become adapt at establishing connections
between indirect surface expressions of three-dimensional geology and the bedrock

geology below the "noise" of the soil and vegetation that masks the geologic
features of interest.

Another conclusion, true certainly for this study, is summarized in the

following statement:

The supervised classification approach appears to be superior
to the unsupervised approach'when applied to vegetation-sparse
surfaces composed of 8pectrally contrasting rock/soil units dis-
tributed in relatively flat to low relief terrain.

For geologic purposes, this statement seems to favor settings in arid country in

which a variety of rock units are well exposed in valleys, plateaus, or other

terrain consisting of gentle slopes. It implies a potential for reaching a high

levt,[of accuracy in terms of correspondence between remotely-sensed units and
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formations or ocher geologic unltn displaylng distinctive differences in material

proportion that correlate well with spectral parameters. It further implies a
range of lower accuracies for rugged terrains in a typical western U.S. setting

; and oven lower accuracies in an eastern U.S. physiography. For both situations,
the presence of heavier vegetation cover and perhaps thicker soils accounts for
much of this reduction in accuracy. These generalizations have already been

reported by other Landsat investigators; this study merely re-enforces these
observations,

The 32 clu3ter unsupervised classification CL7 approaches the quality of CLI

but some glaring mlsidentiflcationn and omissions compromise the CL7 accuracy. _!

That classification, furthermore, is really a variant of the supervised approach ,i
in that the alarmed plxels for each cluster are identified from prior knowledge.
The ground truth in that case is the distribution of classes determined directly
in CLI and, in turn, controlled ultimately by the DVS reference map.

Problems in correctly identifying the class relative to its ground truth- _
equivalent unit will be greater for some units than for others. This is clearly

evident in the Death Valley subscene for such readily confused and poorly separated
_ units as PPN/PNM, QL/QS/QD, and IPC/C/CP. Each of these "look alikes" gro, pings

-- is marked by spectral similarity in terms of means and by rather large _=_iances.

• In the field, the characteristics of the units involved--mainly in regard to
topographic variability--accounts for much of the misidentification.

Other problems affecting accuracy are inherent to such elements of the remote

sensing approach as sensor performance, processing methodology, and image display.
The availability of six reflectance bands on TM certainly improves the apparent

: accuracy. The optimum results are associated with CLI and CL7, both six band

classifications. The three new bands on TM (I, 5, 7) seem to do a better job on
rock identification than the three MSS-equivalent bands but the proper test of

that conclusion should consist of a comparison with a classification performed on

actual MSS data. One can speculate with curiosity on the influence of thermal

band 6 data on classification accuracy; further improvement seems likely.

There appears to be a systematic pattern in the variability of DN values for
any given class _ a function of spectral band (but not necessarily of wavelength).

This is revealed by calculating a statistic called the Coefficient of Variation

(CV), defined as the quotient obtained by dividing the standard deviation by its

mean, and commonly presented as a percent by multiplying the CV by I00. The CV
simply expresses the idea that, numerically, the value of the standard deviation

will increase in proportion to the increase in the value of the mean. For a

series of related measurements over different intervals in a spectral range,

equivalent and constant performance of each sensor channel (band) would be indicated
by a uniform CV regardless of the differences in DN mean values from one band to

the next. The trend for TM bands I through 7 is typified by the CVs for four
classes chosen at random from the 21 classes in CLI (most other classes follow
the same pattern):

iI

•",. 1_°
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Band: 1 2 3 4 5 7

Class

,'I QD 4.0 5.5 6.] 6.7 8.1 8.9

SHAD 10.9 19.7 30.2 46.1 88,4 98.1

PPN 11.2 13.1 I?.6 20.9 23.4 24.8

CD 15.6 23.5 34.0 34.1 41.3 41.4

The CVs consistently rise going from Band I through 7. Some of the variation can

be ascribed to the different gains and offsets applied to each channel. The

sensitivity of each band may also play a role. The variations in atmospheric '!
backscatter radiance with wavelength also contribute. But, the precise cause(s)

: of the increase in CV with band number remains to be determined. '

The effect of higher spatial resolution seems to be that of a moderate improvement

in accuracy relative to a resampled image in which data points are now separated
by 150 meters along scan lines (every fifth sample). This does not in itself

simulate lower resolution; instead, only a reduced number of samples characterizes

the terrain, so that the accuracy must decrease if the variability among classes

is of higher spatial frequency than the 5 pixel separation distance as is likely

true for some classes. Again, analysis of MSS data for the scene--preferably

obtained on the same day as the TM data--using identical training sites and classification
methods must be carried out to achieve a suitable comparison.

The re]ative merits of the particular classifiers used in the CLASFY function

,n terms of resulting accuracies were surprising in this study. The maximum

tikelihood classifier was significantly better than the minimum distance classifier

_P. 2_ in extrapolating the classifications from the training sites to the rest

_f the scene. The reason(s) for this must still be explored.

The best classification maps (CLI and CL7) have more readily interpretable
information than do the Ratio and Principal Components Analysis images produced

for this paper. This is logical in that the geologic units are specified at

the outset of the classification procedure whereas in Ratio and PCA processing

the patterns of ratio and component levels or steps (which are usually contrast

stretched arbitrarily in forming the images) must be correlated with known
units. The patterns show highly variable correlation with units: some coincide

closely but others are poorly matched or may even lack meaningful relation to

the units. Ratio images in particular can be misleading in that certain band

pairs have nearly identical ratios for some classes even though the DN values

of each band may be dissimilar for different units (e g., for bands X and Y,

Unit A = 50/25 and B = 70/35, or 2.00 for each). Obviously, the availability
of six bands from TM increases the probability of finding more individual band

combinations with different DN values that give non-equivalent ratios. These
band combinations may still need to be used because certain other (rock) classes

can be discriminated by them.
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Inspection of the Table 3 ratios derived from CLI means points both to _t

sots of units that tend to yield similar ratios and to band combinations that

are not redundant and hence should afford improved separability. Thus, the

classes IPC, C, CD, OP, and CM (before grouping) all show similar 5/2, 3/4,

and 5/7 values; one would predict difficult separability among these units--a

fact born out by both ratio and classification image results--unless other

band pairings prove more favorable. Conversely, such units as SHAD, VEG, QCS,
and FPD have one or more distinct ratios that minimize confusion. Likewise,

the DN values of TV indicate it to have the highest 5/2 and lowest 3/4 ratios,

implying efficient separability which, unfortunately, does not occur in the
color ratio composite. Three duos of units--QD and QLB, QA and QAB, and PPN

and PNM--all show very similar 3/4 and 5/7 ratio values but notably different

5/2 values, suggesting that they can be effectively separated by color differences _

in the ratio composite. In fact, however, this fails to happen in the color
composite shown in Figure I0. Overall, then, that composite does not achieve

the quality of units definition and separation evident in ratio composites
made by other investigators, for reasons still obscure but undergoing examinatiot_.

Concluding Statement:

The results from this experimental study of the efficacy of computer- i_

based classification using Landsat-4 data to map a favorable geologic terrain
have been sufficiently encouraging and positive to warrant expansion of the

investigation. The work will continue with additional research on the Death

Valley image and subsequent examination of scenes from other parts of the U.S. _I

and the world. The following tasks are now underway or planned: _I
I

(]) Application of classification techniques to the Ratio and PCA images.

(2) Classification of MSS imagery for Death Valley, for comparative purposes.

(3) Use of DMA topographic data tapes to attempt to improve classification i

accuracy, particularly in the uplands.

(4) Digitization of the 1977 DVS and the Hunt and Mabey maps, and consequent
determination of classification accuracy• .

(5) Selection of other subscenes from Death Valley, including at least one

with extensive mineralization/alteration, i

(6) Testing of the developed classif cation ,c.-thodologlesand experience
on other Landsat scenes (Wyoming; Utah) !• I

These further studies will no doubt bring about better quantification of i
accuracies, av increase in accuracy levels themselves, and improved understanding

of the factors that influence the classification process. However, evaluation

of the work done in this paper prompts the author to reaffirm one of his previous

general conclusions, which here serves also as a prediction. Thus, classification

of remotely sensed data pertinent to geologic mapping but without concommittant
field work will by itself probably never lead to levels of accuracy that meet

the demanding standards of the professional community. These levels, while
seldom explicit, should exceed 90% in conventional larger-scale maps; levels

below that may be acceptable in reconnaissance geologic maps. The inherent
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;
inability of remote sensing to decipher the stratigraphlc nature of rock units
will prevent multispectral classification from becoming a stand-alone approach.
Nevertheless, as spatial resolution improves and optimal spectral bands for
identifying rock materials are specified, use of classified multispectral
remote sensing data from air and space when coupled with supporting field
calibration and checks will quite likely become the dominant way in which
geologlc mapping is carried out in future decades.
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FIGURE CAPTIONS

Figure I: Generalized geologic map of the Northern Death Valley study
site, drawn from the 1977 Death Valley Sheet (1:250,000).

Figure 2: The classification maps produced by Supervised (left page)
and Unsupervised procedures; see text for details.

Figure 3A: A, This panoramic view is taken from the highway north "= Tuckl
Mountain looking northeast across Mesquite Flat towards _he Grapevine

Mountain. QA deposits make up the foreground. QD appears as a
llne of dunes in the middle. Beyond are its PPN units, including

the light colored phase, and dark PNM units against the mountains.

The Death Valley Buttes block is seen near the center right.

B. A closer view of the dune field near Stovepipe Wells. The

vegetation may correspond to part of the VEG class in that vicinity.

C. This scene shows the western end of Mesquit,. Flat looking

north along the valley bounded by the Cotton Wood Mountains on

the west and the Grapevine Mountains to the east. The tapering

strip of grey in its middle is typical QA. Limepan Plays lies
beyond where the light tone is present. No equivalent of QLB

is visible in this photo and it defied detection through binoculars.

The gravelly surface in the foreground makes up part of the QA
unit.

D. The west end of Tuckl Mountain is viewed to the south showing
part of the QA fan deposits, hills of PPN beyond and IPC and PPC
units toward the upper left. A dark unit at the bmse of the hills
is a lobe of PNM.

E. The north face of Tucki Mountain exposes several of the Precambrian
and Paleozoic formations characteristic of the uplifts. Units on

the left are probably Cambrian through Devonian in age. Reddish

quartzites are exposed in the lower right, with Precambrian units
above and to the west.

F. The northeast end of Tucki Mountain is seen in the distance. A

large fan of QA deposits lies against the flank. Hills of PN stand

out in light colors in the valley. Part of the Kit Fox Hills comprised

of PPN lies somewhat closer. At right center is the terrain of
Death Valley Butte.

Figure 3B: A. The strongly dissected terrain of the Kit Fox Hills in the middle

ground is composed of PPN. The gravel surface is QAB.

B. Looking eastward from the highway 58 cutoff one sees the northern

end of the Funeral Mountains, where IPC units occupy the lower region

and Cambrian units the higher ridges. The broad light colored area
at the base is the PN training site locality, where travertine,

sediments, and tuff are exposed. The brownish hills are probably
the PNM unit. The foreground gravels are QAB.
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C. _'._ southern end of Cottonball Basin includes the FPD unit iq

(brlghL) and Qc8. This view looks northeast from tlle Furnace i

Crook Inn across the tree-covered Furnace Crook Ranch now

occupied by tourist facilltios and the National Park Service

buildings,

D. The center of Cottonball Basin i.s vislblo from low hil. ln

(foreground) of PNM; Qcs, FPD, and QS units make up the flat
areas within tlle basin.

E. At a preserved historial site of a 19th centuzy borax processing

station just north of the NPS exhibit building, the scene extends

across a tongue of saline deposits, a QA surface, and isolated

hills comprised of the bright PN unit. A spur of Cambrian rocks

appears to the right, with the Funeral Mountains against the ':

skyline.

F. Along the east side of the Grapevine Mountains (with Cambrian

units in the background) are lower hil_s of the reddish TV unit _i• _i

The soil in the foreground is typical of the VO unit. The dark

hills at the right may be the OLN unit.

Figure 4: Location of training sites for CL1 through CL4.

= Figure 5: Classification map drawn from interpretation of CLI map; I

see F_gure 2 for Legend. !]

• Figure 6: Map of geologic units at Cottonball Basin and environs, i_

_ produced for 1982 Seasat report modified from Hunt and
Mabey, 1966.

Figure 7: RECLASS and MINDST images of Northern Death Valley study !i

area, made from CLI data set.

Figure 8: Cluster plot of Bands 3 vs 4 and 2 vs 7 DN means and
standard deviations for CLI data set.

Figure 9: Cluster plot of Bands i vs 5 means and eovariances made
from CL7 data set.

Figure lO: Left - Color ratio composite image of Northern Death

Valley study area, using 5/7 (red), 3/4 (green) and 5/2

: (blue) projection; Right - Color composite made by combining
the first three Principal Components as (I) red, (2) green,

f: (3) blue•

•: Figure If: Black and white versions of the first six Principal Component

images of the Northern Death Valley study area.
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A CONCEPT FOR THE PROCEBBI_Ifi AND DISPLAY OF THEMATIC I_PPER DATA

Dr. Rupert Haydn
61

University of Munich
Faculty for Geosctences

Lulaenstr. 37, D - 8000 MUuchen 2

t_

INTRODUCTION

With the successful launch of the Thematic Mapper on _andsat-40 NASA has

implemented a system which will have tremendous impact on the future of

spaceborne remote sensln8. The improved capabilltles of this scanner
in comparison to the LANDSAT-MSS form an important basis for evaluatln8 the

operational aspects of remote sensing from space and also for explorlns

its implications to the earth sciences, especially in terms of information
acquired within the so called short-wave infrared regions (SWIR) of the

electromasnetic spectrum.

In keepins with the overall goals of this program, it is essential to
improve data availability not only to the existing remote sensing com-
munity but also to potential users with new applicatio_s° Therefore,
topics such as image distribution networks and image formats in terms
of optimizing the data content and extractable information within com-
monly available standard products should be emphasized. The purpose of
thls paper is to discuss thls concept of optimization and to show ways
in which preliminary Thematic Mapper image products might represent a
feasible approach towards the above cited "commonly available I
standards". !

1
User Requirements Versus LANDSAT Thematic Mapper Data I

With respect to the availability of Thematic Mapper image products, one
must spe_ifically consider the needs of the large potential earth-science
user community, which is not necessarily interested in remote sensing re-
search per se, but in the utilization of remote sensing products as one
of many tools. For the near future, the ].ink between remote sensing

,/1
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technology and the potential user eommunity has to be ostabllahed on a level
which adequately meets its requirements on a non-exp_rlmental or operational

basis. This can probably b_ bent fulfilled through addressing existing and
well mnLnbli_h_d eapabilitle_ for Interpretive analy_i_ of imago data,

The LANDSAT-4 Thematic Mapper system repren_nts an Ide_l platform from which

to promote the establ'.nhment of such a llnk. The hlgh resolution enpnbillty
of TM brings spacoborne remote sensing trite the realm of high altitude aerial
photography. Therefore, the traditional methods in photointorpretation can
now be applied more directly than was possible with lower resolution da_a. Thin
poses a challenge for the poten_ial user community which has to be met.
The spectral information acquired by multlapectral scanners is a feature
unique to remote sensing technology. The diversity of spectral bands on
TM offers new capabilities for identifying and classifying earth materials
that must be considered in any utilization scheme.

Generally, it can be stated that multispect_al information can best be
accessed and evaluated through digital and interactive image processing

.' techniques. The potential user community, however, has not reached the

level where image processing is being used routinely as a standard tool.
Therefore, for the time being, special effort must be put into development

of strategies that will guarantee optimal utilization of the spectral

information contained in remote sensing data acquired under the varying
conditions affecting each scene. The Thematic Mapper system provides

spectral information in seven carefully selected spectral bands, covering

the visible, near IR, short-wave IR and thermal IR region of the electro-

: magnetic spectrum. The challenge is to devise the best approach for pre-
senting this complex spectral information in a pictorial format which can

be understood and accepted as a standard by the growing user community.

Currently, natural and false color images are the standard display products

with which the user community has become familiar. But, if we incorporate one
or both of the short wave IR bands of the TM (bands 5, 7) into the production

of a color image, that community should be willing to accept this as another new
standard which supplements rather than replaces the imagery already in use.

The mere display of individual TM-bands in the form of black and white ren-
ditions cannot be regarded as an optimum standard product because the

actual recorded spectral information is not easily assessed by visual means.

Thus, unique spectral characteristics recorded in one band are most
effectively displayed and identified when considered in combination %ith or

contrast to other spectral bands. Therefore, the generation of improved

standard products requires a certain amount of image processing in order

to take full advantage of the multispectral information recorded. Taking

advantage of the spectral information means also to generate pictorial
presentations which can be readily understood and "spectrally deciphered"

by the interpreter.

A more detailed discussion on the above requirements is presented in the
following paragraphs.

I
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_oma Basic Consldarat_ons About the Interpretati_ of Nultlgpeetral Da_a

For t_terpretive purposes, mu],ti_peetral imago data ea_ be elmraeterizod
: by two levels of informagion. Thane lav_la will be further referenced aa

INTERPRETIVE COMPONENTfl and they can be .uhdivlded into a PANCHRO_TTC
COMPONENT and J.nto on_ or mor_ fiPECTRAL COMPONENTS.

Panehromatlc Component

• This component ifl ellaractortzod _hroufih imago attribute, which a photo-
interpreter knows how to handle on the be.is of hie experiences In the
tradition_l fieldo of aerial photo tnt_rprol:ation. Panchromatic black
and white aerial photographs can s_ill be regarded aa the cl.aaaic data
source for photo interpreters. Through a careful analysis of tonal
variations, textures, shapes and other image attributeo, these plcturcs
provide important Informatlon for multldlsciplinary earth scientific

applications.

Within the context of _his paper, the term "Panchromatic Component" is

used to specifically address, in a symbolic way, those features of multi-

spectral r_mote sensing data that retain strong ties to the concepts

..,_' applied in conventional photointerpretation. Thus, the panchromatic
• component describes basically the flrst-order effects of image brightness
. due to surface topography and albedo.
f

Because of long established methodologies and experience in this dis-
cipline, many users of remote sensing data continue to work on straight-

forward black and white renditions of the individual spectral bands.

Spectral Components

The term "Spectral Components" indicates a level of information which ex-
hibits subtle spectral reflectance contrasts of surface phenomena.

Normally, the Spectral Component of a multlspectral data set is dis-

played through additive colors. However, a Spectral Component can also

be presented as a set of black and white images, exhibiting relative
differences in spectral information.

In order to further discuss the signlficance of Spectral Components

within the overall concept, it is necessary to point out some simple
relaticnships between multispectral characteristics, color and how color

is being incorporated into interpretation schemes.

The most straightforward and understandable approach

in the interpretation of the "information source"

color is based on aerial color photographs. Color
photographs can be regarded as produced by a multi-

spectral sensor operating within the visible wavelength

region. According to th_ previously given definition,

the color displayed can be related to the Spectral

iV-Z19
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Component. Using such photograph., the interpreter is
able to directly relate and compare the dlsplaycd colors

with the environment as it i_ being cxperlenced by him.
Therofore, in this ease, color in used on a rather In-

tultive and empirical basle. It supporta dlreetly tho
recognition and Identification of surface phenomena.

Although it is a fact that color i_ an expression of
spectral properties, an interpretor of natural color
photographs normally dooa not think in terms of
spectral catesories.

A different situation occurs when analyzing an IR-
false color rendition. The expression "false color"
indicates already that the aLove intuitive and em-
pirical approach is no longer feasible. Color new
acts as a more abstract source of information. It

becomes involved in the process of analysls in order
to distinguish between various surface categories on
a purely phenomenologlcal basis. However, if the in-

terpreter is experienced in the analysis of IR-false

color renditions, he is able to addltionally derive
diagnostic and understandable spectral information

for a limited number of spectrally unique surface
categories.

A typical example along this line is the red appear-
ing vegetation cover on IR-false color composites.
This example serves to demonstrate the transition

from the previously discussed intultive-empirlcal

approach to a phenomenologlcal and finally to a
spectral-dlagnostic oriented utilization of color.

The empirical approach is based on the simple know-

ledge that healthy vegetated areas appear always red

on false color IR renditions. From a phenomenologi-
ca1 point of view, one would only identify red colored
areas, without being able to draw concluslons on the

nature of the phenomenon. However, using color in its

spectral diagnostic sense, the corresponding analy-
sis could be described as follows. Red colors in-

dicate increased Near-IR reflectivlty in comparison
to the reflectance characteristics in the visible.

Such a spectral pattern can be related to vegetation.

For interpreting multlspectral data, especially from the broader spectral
coverage such as the Thematic Mapper System provides, the applicability of

the spectral-dlagnostic approach is regarded to be of utmost importance;
likewise, the interpretation of multispectral images from a purely phenomeno-
logical aspect is not an adequate substitution for the above intuitive-

empirical approach. Unfortunately, the spectral-dlagnostic approach does
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not always work well on IR-false color and other multispectral color com-

posltes. The reason for this can he found in the correlative properties of
multlspeetral data. This means that most surface features axhibit similar

." variations in their wavelength-dependent reflectivity (similar shapes of
spoctral curves). The combination of highly correlated spectral bands into

additive color renditions leads correspondingly to images characterized by
subtle color variations that are difficult to perceive and to understand.

Because of these effects, it is important to enhance the Spectral Components
to improve their interpretability on a spectral-diagnostic basis.

Conventional Processing Techniques Versus Interpretive, Components q

From an interpreter's point of view, both the Panchromatic as well as the
Spectral Components are equally important drivers for an optimum visual

analysis of multispectral data. Therefore, it is essential that any en-

hancement scheme consider individually the various Interpretive Components.

In regard to commonly applied dlgltal image enhancement and dlsplay tech-
niques, this requirement is inmost cases not being fulfilled. In the

following section the relationship between some processing techniques and

the above Interpretive Components is given.

RATIO ENHANCEMENT means essentially an enhancement of the Spectral Com-

ponent. Multipllcative effects caused by changing illumination due to topo-
graphy are minimized and subtle variations in the spectral slopes between

the two ratioed bands are enhanced. A ratio image can be directly used to

interpret spectral relationships independent of morphology. This means,

however, that the Panchromatic Component must be sacrificed. The creation
of color ratio images and also hybrid ratios does not reestablish a Pan-

chromatic Component in the previously defined sense.

CONTRAST ENHANCEMENT of individual spectral band images as a necessary pre-

processing step takes advantage of the full dynamic range of the dlsplay
medium. It affects both components in a positive sense. The disadvantages

inherent in the additive color process resulting from highly correlated

spectral bands, however, eatmot be overcome.

EDGE ENHANCEMENTimproves the interpretability of the Panchromatic Component
(texture). Color composites of edge enhanced spectral bands are characteri-

zed by a slightly degraded Spectral Component.

LINF_R TRANSFORMATIONS and the principal components transformation as a

special case may affect both components, depending on the weighting factors

applied. Additions of spectral bands enhance the Panchromatic Component but

diminish the Spectral Component.

In summary, the commonly applied approaches to the enhancement and display

of multlspectral data cannot be regarded as a good solution for the generation

of optimized image products. The photo interpreter gains the most
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intelligible presentation of multlspectral data when he bases his analysis
of a Panchromatic Component on a scenario with which he is familiar while

relying on Spectral Components to provide him with additional spectral-

diagnostic information. This requirement has a strong impact on the overall
approach in the processing of multispectral and especially of Thematic

Mapper data. The approach is based on the following steps:

I. Independent definition and optimization of individual

Interpretive Components.

2. Combined display of individual Interpretive Compon-
ents in a perceivable manner.

Definition and Optimization of Interpretive Components

The definition of the individual Interpretive Components depends_ of course_
mainly on the number and the characteristics of spectral hands available but

also on target areas, as well as on intended applications.

The Panchromatic Component as an information source for image attributes, as

described earlier, can be represented by a single hand, preferably with a
good dynamic range and signal to noise ratio. For processed TMdata, as

will be demonstrated in this paper, the near IR hand 4 has been selected.

For optimization purposes, edge and contrast enhancement algorithms were
applied. Another possible approach which gives an even better illustration

of the Interpretive Components concept is to equate the Panchromatic Com-

ponent to a First Principal Component image derived from the three visible
TMbands.

In order to appreciate the rather simple implications in the definition of

enhanced Spectral Components one needs to keep in mind the above require-
ment of being able to base the analysis on a spectral-diagnostic approach.

Thus, each defined Spectral Component has to be characterized by intelli-

gible spectral meanings. Intelligibility, however, is reached if only a
limited number of spectral bands are being considered at a time.

The best means for displaying enhanced spectral information lles in the

generation of spectral ratios. In this way, the spectral slope between
any two bands can be displayed and interpreted independent of the first-

order brightness effects that are accounted for by the Panchr_mstlc Com-

ponent. The Spectral Component may also be defined in terms _._' thermal
or thermal inertia data.

For some applications the Spectral Component can be assigned co more complex
ratio transforms which include more than two spectral bands. Such ratios

are defined in order to quantify certain surface phenomena which need to be

monitored, as for example, the development of vegetation. The ratio trans-

forms are referred to as vegetation or soll brightness indices. In this

instance, the Spectral Component will exhibit data on the nature of certain
phenomena rather than spectral-diagnostlc information.
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Pictorial Presentation of Interpretive Components

?,

In the previous section we noted that a multispectral data set can be

separated into various "information planes" referenced as Panchromatic and

Spectral Components. Each of these components has to be individually de-
: fined. In order to improve the value of these components for interpre-

tatlon purposes, they also need to be individually enhanced. A logical

_. " approach to implementing the components concept is to merge and display
the defined components within a single image. Figure 1 exhibits a sche-

,_., matlc representation of the various steps.

An important boundary condition at this point is, however, that the in-

: dlvldually defined components be perceived independently on the basis of
the flnal image product. The use of additive color processes to combine

, the Interpretive Components would obscure the previously defined and

separated information planes. Two alternative approaches for generating

_.i image products that display the Interpretive Components in a non-confusing
--/

__i manner are based on: i) the application of a color coordinate system
_iil described as Intensity, Hue and Saturation (IHS), and 2) the generation

ii_? of synthetic stereo (SST) effects. Both te. .iques are well establishedin the field of multispectral image processing. The IHS transforms in one
:-_ or another modification can be used to analyze color images or to combine

_i,:, multisensor _ata. The introduction of a synthetic parallax function is

: applied to g_erate true stereo images on the basis of digital terrain ii!
i_ models or to display other kinds of non-imaging data such as geophysical

and geochemical measurements. For a better understanding of the utilization ;i
i_::" of these techniques, a short summary is given.
[q,

'_ Intensity_ Hue and Saturation (IHS) Color Coordinate System

_ In the theory of the IHS-color coordinate system, any color image triplet
i_ based on the red, green and blue (RGB) primaries can be represented alter-

_ natively by three independent parameters which describe color in terms of its

Intensity (1), its Hue (H) and its Saturation (S). These parameters will be

_ perceived independently by the human observer. From a processing point of

view, Intensity, Hue and Saturation can be represented as three data fields

_ or grey tone images in which each field is individually manipulated. In
':: order to vis_lalize the effects of IBS-manipulations on the curresponding

_: color presentation, they have to he retransformed into an RGB-system

'_ (Figure 2a). A specific scheme for combining Panchromatic and Spectral
Components through an IHS-RGB retransformation is shown in Figure 25.

!_ By treating any three images, A, B, and C respectively as Intensity, Hue
and Saturation components and decoding these images into an RGB color ren-
dition, the intensity or brightness of the resulting color image is control-

led solely by image A, the hues by image B, and the saturation by image C.
The fact that intensity, hue and saturation are controlled individually,

so that they can be perceived independently, makes such a model a powerful

tool for Jointly displaying individual Interpretive Components in a non-

confusing way.
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Synthetlc Stereo (SST)

In color presentations, there will always be only three variables or Inter-
pretlve Components which can participate in generating the final display
product. This is valid for the RGB as well as for the IRa system. Owing
to the increased number of spectral bands provided by the Thematic Mapper
system, an even larger number of Interpretive Components are available to
contribute to a color display. To incorporate additional components in a
color display limited to three variables requires innovative processing
techniques.

I

An interesting and useful solution for this is to generate synthetic
stereo pairs in IHS color in which the 3-D effects is modulated by infor-
mation provided by a Spectral Component rather than by the real topography.
This permits the interpretability of the original color display to be
preserved, while the additional introduced Component accounts for a fourth
variable that can be analyzed together with three other Interpretive Com-
ponents. The quasi stereo representations are calculated by displacing

the ptxels of a scene along the scan lines by amounts proportional to the
DN values of one of the previously defined Spectral Components.

Taking into account the large number of Interpretive Components extractable
from TM-data and the manifold possibilities in their presentation through
IHS and SST, one should follow a certain strategy in order to avoid con-

fusion. Such a strategy is based on _ ri2_ decision as to the Inter-
pretive Components to be displayed and is further tempered by certain basic
rules of assignment.

Some Rules in the Handling of IHS and SST

Based on the implicit meaning of intensity, hue and saturation and the infor-
mation exhibited through the Interpretive Components, the Panchromatic Com-
ponent is best treated as intensity. As color perception is strongly degra-
ded with decreasing intensity or image brightness, a mapping table must be
applied which offsets the histogram in order to avoid completely dark areas
on the final product.

For some applications involving observables such as water areas, it will be
necessary to apply more complex enhancement techniques to the Panchromatic
Component. A typical example within this context would be to increase the
DN-values of pixels representing water. This can be achieved through piece-
wise linear mapping tables. Cosmetic operations, however, should not
destroy the meaning of the Panchromatic Component for interpretation pur-
poses in the previously defined sense.

Spectral Components can be best displayed through hue, saturation and syn-
thetic stereo. The way in which color is perceived by the human observer
and the appllcatlon-orlented significance of a given Spectral Component
have a strong impact on their final assignment. It can be generally stated
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that an interpreter will have difficulties in visually differentiating among
various subtle levels of saturation or pastels. Therefore, those Spectral
Components which exhibit significant spectral informatl _ mainly in their
extreme values should be considered as drivers for satyr _ion. For the

presentation of highly differentiated spectral eomponent_ it is necessary

to use hue or synthetic stereo as the basis for display,

The approach in making the final assignment of Spectral Components through

hue and saturation can be simply demonstrated by an example applled to

vegetation. If one speclfically wants to visualize the effect of vegetation
on the slope between spectral regions in the red (TM-band 3) and near IR

(TM-band 4), the corresponding Spectral Component will be best represented

through hues. In such a case, saturation could be used to additionally
highllght the high degree of correlation between the _ _n (TM-band 2) and

the red (TM-band 3) - "greenness factor" - or between u _ near IR (TM-
band 4), and short wave IR (TM-band 5), which might provide diagnostic

data on water absorption characteristics.

Special treatment is needed to handle thermal data when combined with re-

_i flectance data through IHS recording. When, in the normal case, thermal
,i patterns are restricted to only one Spectral Component (e.8., TM-band 6

._I or HCMMATI), best results will be achieved by assigning the corresponding

thermal and reflectance components to hue and saturation respectively.

The above examples also demonstrate the value of the proposed concept in

actually constructing image data, which will provide _ priori defined in-
telllgible spectral information.

Prelimlnary Thematic Mapper Image Products

Relying on past experiences in the processing of LANDSAT MSS and other
multispectral data through IHS and SST, a Thematic Mapper scene (40124-

17495, Nov. 17, 1982), covering the Death Valley and parts of Nevada has

been processed under various conditions. However, there has been only

limited experience-malnly with aircraft data-in the shortwave infrared
bands (Bands 5 and 7) data from Thematic Mapper, so that their utillty

for llthological mapping using the concepts presented in this paper, is

a prime objective in the study.

Therefore, the bulk of the experiment to process these TM images was

devoted to specifically displaying spectral surface characteristics

recorded in these wavelength regions. This has resulted in the definition

of Spectral Components exhibiting correlative spectral information between
the TM-bands 4 and 5, 4 and 7, and also between 57 and 7. Additional

Spectral Components were calculated to enhance "color" in terms of looking
at the slopes between green and red (TM-bands 2 and 3) and in order to

display thermal characteristics as recorded in TM-band 6. A more detailed
description of image products generated so far is given by Table I through
5.
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CONCLUSIONS !

Processing of the Thematic Mapper data within the framework of Interpretive

Components requires the application of special display techniques, referred
to as I_S and SST. The results to date using these techniques demonstrate

_mproved visual separabillty of spectral surface categories relative to

standard multlspectral color composites as well as a greater potential for
conducting meaningful spectral-dlagnostic analysis.

The overall concept discussed in this paper may also serve aG a sound basis
for defining IHS-SST Thematic Mapper images as superior standard products.

The establishment of optimum standards, however, requires more experiences _

in the application of TM-data. i:
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i_ INTRODUCTION

,_:_ Wlth the launch of Landsat-4 on July 16, 1982, and the successful operation of
i;._ its new sensor, the Thematic Mapper (TM), a significantly improved source of

i"_ data became available to the remote sensing community. Relatlve to the famlllar
,.- Multispectral Scanner (MSS), the TM offers a finer spatial resolutien, new and

_, more optimally placed spectral bands, and improved radlometrlc sensitivity
!_ quanttzed over eight bits rather than six bits (Table 1). These improvements in
.- sensor capability were designed to significantly increase data quality and
i'_ information content, and thereby enhance the utility of the data for earth

resources observations.

One method commonly used co assess the relative utility of image data acquired
= by different remote sensing devices is to compare accuracies attained in the

classification of plxels Into surface feature categories. Numerous studies

using data collected by alrcraft-mounted Thematic Mapper slmulators (TMS) were
'_. conducted prior to the launch of Landsat-4 to quantify the overall improvement

in classification accuracy to be expected from TM data relative to Has datal.

;" However, few of these studies attempted to isolate the impact or contribution
.. of individual sensor parameters (e.g., spectral, spatial, and radiometrlc

resolution) on classification accuracy.

The effect of altering individual sensor attributes can be anticipated
qualitatively. For example, the addition of spectral bands can enable the

discrimination of prevlously inseparable categories by pcovidlng data from

portions of the spectrum where category reflectivities become disparate.

: Similarly, improved radlometrlc resolution and increased signal-to-nolse ratios
may facilitate discrimination by enhancing between-category boundaries in

spectral data space. In contrast, the refinement of spatial resolution can
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i ' have offsetting effects on classification accuracy2. Finer resolution tends
- to decrease the proportion of mixed pixels and thus enhance classification.
: _ Classification is hindered, however, by an increase of wlthin-category spectral

_ °: heterogeneity at finer resolutions. The TM is the result of an ambitious

: development effort which simultaneously integrated all of these major

,_; improvements into one system. Classification capabilities with TM data result
! _ from the interactive effects of all of the sensor's attributes which complicates

i - a more quantitative evaluation of the effects of individual sensor improvements.

Such quantitative information couT_ significantly benefit scientists and engineers

:" in defining sensor parameter requir_.,,_entsand in designing new sensors for
,_ ---- future remote sensing missions.

With the encouragement of the Landsat-4 Project Scientist, a group of discipline
._ scientists within the Earth Resources Branch at NASA's Goddard Space Flight

Center in Greenbelt, Maryland, conducted an experiment to quantify the effect of

.... three major TM sensor parameters on classification accuracy. This paper
: discusses the experimental design and summarizes the prellmlnary results obtained

: using TM data acquired over the Washington, D.C., area on November 2, 1982.
T

_" STUDY SITE/DATA DESCRIPTION

_" Accurate, detailed ground reference information was an important component of

. the study. To facilitate the collectio_ and field verification of the ground

_:_ reference data, an area close to Goddard was selected as the general study
i,_ area. This area is bounded on the west by Washington, D.C., on the north byi'_o,

i_ Baltimore, Maryland, on the east by the Chesapeake Bay, and on the south by
;=_...'_ northern Charles County, Maryland (Figure I). The area is characterized by a
i:_,: diversity of urban, suburban, and rural land cover types. The western portion

!_ of the area includes numerous residential developments associated wlth suburban
i_; Washington, D.C. The entire area includes intensive urban fringe development,

,._?_ suburban multlfamily and single family residential tract development, low
_-_;_" density single family developments, and rural areas. In addition, numerous

{= commercial support services such as shopping centers, industrial complexes,
! _ gravel quarries, and airports are scattered throughout the study area. The area

!.L lacks heavy industry, but does include the Fort Meade and Andrews Air Force

_ Base military complexes. ,
!..

i _. In addition, the region includes areas of agriculture and forest cover. The

_ agricultural areas are primarily small, scattered fields. The principal crops

are corn, soybeans, and tobacco, with areas of pasture and grass. The study
site includes the USVA/Beltsville Agricultural Research Center. In terms of
areal extent, forest is the predominant cover type, and consists primarily of

}_ mixed deciduous forest, mixed hardwood-conlfer and isolated conifer stands.

The area also includes lowland vegetation communities associated with Chesapeake

-. Bay estuaries.

Tc acquire ground reference data, an aerlal photographic mission was flown on

July 13, 1982, to obtain color infrared aerial photography in stereo at a scale

of 1:40,000. A random sample of nine frames of photography was selected from
this aerial survey to obtain a representative sample of the range of ground

_ cover conditions in the area. These frames represent the actual study sites,
' and their locations are illustrated in Figure I.
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,_lthough Landsat-4 was launched on July 16, 1982, seven-band, cloud free TH
_.magery for all nine study sites was not acquired until November 2, 1982o TH
and MSS imagery were collected simultaneously, and both data sets were of

excellent quallty (i.e., no cloud cover, and both sensors operating satlsfactorily).
Ground cover conditions were less than optimum for category recognition due to
the time of year. For example, deciduous trees were undergoing faU leaf
coloration, most agricultural crops had senesced, and many fields had been
harvested. In addition, total scene illumination was reduced because of low

sun angle conditions in November and thus, the full dynamic range and quantization
capabilities of the TMwere not utilized. However, a decision was made to
proceed with the analysis because it afforded the first opportunity to test the

i_ experimental design/methodology with real TM data; because a quantitative
assessment of the attributes of TM sensor parameters relative to MSS was desired
as soon as possible; and because a ground reference data base for an alternate

area could not be created in a timely, cost-effective manner. Digital TM data
in P-format (i.e., radiometrically and geometrically corrected) were used.

PROCEDURES '!

i i.,

_. The first step in the work presented here was to design an experiment which i:
!-_ could isolate the effect of each TM sensor improvement (spectral, spatial and
• radiometric resolution) on classification performance. The work of Sigman and
_: Cralg3 with TMS data suggested a promising methodology based on multlfactor _

analysis-of-variance (ANOVA). The ANOVA approach permits the evaluation of the I

effect of three factors (i.e., spectral, spatial, and radiometric resolution), il
where each factor has two levels (i.e., TM and HSS), on classification accuracy.
This approach requires eight data sets as shown in Table 2. Data sets are
created by degrading TM data in a manner which approximates the MSS level for
each factor (e.g., TM data are spatially degraded to approximate the coarser
Has spatial resolution). The degradations are described in more detail in a t_

subseql_ent section. The ANOVA design enables the statistical testing of the i
significance of classification accuracy differences between data sets. The
testing results in a quantitative assessment of the effect of each sensor
improvement, individually and in combination with other improvements, on

classification performance. ,

The analysis of the eight data sets is not yet completed. However, to obtain
preliminary, quantitative results, the data sets labeled A, B, C, and D in Table 2
were generated. Data set A consists of actual TM data where the 120 m thermal
band data were deleted. Data sets B, C, and D were derived from the actual TM

data by degrading one factor, either spectral, spatial, or radiometric resolution,
to the HSS level. These data sets were chosen to provide a preliminary, "quick
look" assessment of the effects of improving one sensor attribute at a time.
Several major activities were involved in preparing and analyzing the data:
photointerpretation of the aerial photography to create a ground reference data
set, extraction of the TM data corresponding to the nine study sites, preprocessing
of the TM data to simulate HSS spectral bands, spatial resolution, and radiometric
characteristics as required by the ANOVA design, selection of training and test
sites for each cover type, clustering and classification, and tabulation of
results. To maintain brevity, only the highlights and unique aspects of these
various procedures will be presented.

r
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Photointerpretatton

As previously mentioned, color IR aerial photography at a scale of 1:40,000 was
acquired on July 13, 1982, Just prior to the scheduled launch of Landsat-D.
Nine frames were randomly selected for detailed analysis. Prior to

photolnterpretatlon, a decision was made to work wlth a sub-frame area designated
by plus-or-mlnus 50 mm on either side of the prlnclpal point of the 241 mm

format photography. The resultant 100 mm square area represented approximately
20 percent of the entire frame. It was felt that thi_ approach would minimize

the effects of distortions typically found toward the edges of aerial photographs.

The 1:40,000 scale sub-frame areas were photographically enlarged by a factor
of four to attain a nominal scale of 1:10,000 and paper prints were produced.

Each 400 n_n square, I:I0,000 scale photograph covered an area of 4000 m on a side,
or 1600 hectares per photo. Clear acetate film was lald on top of each photograph

so that the photointerpretatlon results could be scribed directly onto the film
overlay. The original photography was available and could be viewed stereoscopically _

with a 7x magnifier in the event questions arose concerning the identity of a i
. particular feature on the paper enlargements. Using this approach and a minimum

mapping unit criterion of 15 m (i.e., one-half the instanteous-field-of-view
_- of the TM), thirteen land cover/land use categories were identified on the

photos (Table 3). All polygons drawn on the acetate overlays were labeled
with the appropriate land cover/land use identification. The phoLointerpretation
and labeling results were verified or updated by field visitation and enumeration

during the last week in October, Just prior to the TM data acquisition. It
should be noted that the land cover/land use categories are not mutually
exclusive. For instance, large lawn areas in residential neighborhoods were

,_: considered grassland. The land use categories were used in situations where

the land cover components of the categories (e.g., the roofs, grass, trees, and
asphalt of a residential neighborhood) occupied areas with dimensions smaller
than the 15 m minimum mapping unit.

Preprocessing of TMData

The TM data corresponding to the nine randomly selected study sites were

extracted from the original P-format data tapes to facilitate subsequent
processing. Each extracted segment of the TM data was 256 by 256 plxels in

size and contained all six bands of 30 m resolution data. The thermal IR data,
which are collected at a ground resolution of 120 m, were omitted from this

study due to the significant difference in spatial resolution. The ANOVA design
(Table 2) required the original TM data to be degraded spectrally, spatlally,

and radlometrlcally to slmulate MSS specifications for each of these sensor
parameters. The precise simulation of MSS radiometry, spectral bands, and
spatial resolution from TM data is not possible due to inherent differences in

spectral band cutoffs, radlometrlc responses, and across track scanning
strategies. The procedures used to degrade TM data for MSS simulation are
described below:

(I) Spectral Simulatlon

The simulation of MSS spectral resolution was achieved by using only TM bands
2, 3 and 4, which closely approximate MSS bands I, 2 and 4. The inability to

T_
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approximate MSS band 3, the first near IR band, was not considered significant
because MSS bands 3 and 4 are often highly correlated and provide redundant
information.

(ii) Radiometric Simulation

The radiometric analysis consisted of a comparison of quantization levels. The
HSS simulation was achieved by mapping the 0 - 225 range of potential bins for
the TM data into 0 - 63 bins for MSS data (i.e., each TM datum was divided by
four and rounded to the nearest integer). In taking this approach, two
simplifying assumptions, that the dynamic range and signal-to-noise ratios of
both sensor systems are comparable for the similar spectral bands, were made. ,
Neither assumption is precisely correct. Therefore, this approach simply
addresses the issue of six bit versus eight bit quantization, rather than TN
radiometric sensitivity versus MSS radiometric sensitivity.

(lit) Spatial Simulation i

The simulation of MSS spatial resolution was achieved by computing the simple
arithmetic average over a three-by-three pixel window of the TH data. The window

was moved across the image two columns at a time to simulate the 57 m along-scan
MSS sampling rate relative to the MSS 80 m IFOV. After moving across an image,
the averaging window was incremented two lines to approximate the geometric

I

resampling of HSS data to reduce the 80 m nominal pixel dimension in the _i

along-track to 57 m. Thus, the 57 m-by-57 m pixel format of the standard tMSS P-tape product distributed by EROS was simulated. ,,

Selection of Trainin s and Test Sites

Training and test sites were chosen in a supervised manner. The TM digital i!
data for each study site were displayed on a cathode ray tube (CRT), compared
to the corresponding airphoto/acetate overlay, and representative areas were
outlined and labeled on the CRT using interactive cursor training capabilities.
A number of training and test sites were identified for each land cover/land
use category using this technique. The locations of the training and test
sites were identical for all four data sets.

Clustering and Classification ],

The category statistics required for classification were derived separately fur I
each of the four data sets under analysis. Given a particular data set, the i
training site data for each land cover/use category were clustered into spectral !i
classes by a well known computer program called ISOCLS4. The parameters of 'l
ISOCLS were specified in a manner which limited the number of spectral classes
to four or less per category. No attempt was made to improve subsequent
classification results by the editing of the statistics generated by ISOCLS
(i.e., no merging, pooling, or deleting of spectral classes). Editing was
deferred to avoid the incorporation of analyst bias into classification results.
The intention of the procedure was to allow the characteristics of each data

set to be the sole determinants of classification performance. Results, however,
are also highly dependent on the algorithms chosen to define category statistics
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and to classify the data.

The use of the clustering program produced a different set of category statistics
for each of the four image data sets, and each land use/cover category within a
data set was represented by up to four spectral classes, For each data set,
the pixels from both the training sites and the test sites were then classified
according to the category statistics using a per-polnt Gausslan maximum likelihood
classlfler.

RESULTS

For this "quick look" analysls effort, the frequency of errors of omission and
commission were tabulated for each of the thirteen cover classes for each of

the four data set treatments. Omission/commission errors were tabulated by
making independent comparisons of the classification results to the ground
reference data for both the training site pixels and the test site pixels.
Only the "test" results will be presented here as they are unbiased relative to _
the development of spectral signatures for the various cover classes.

Table 3 lists the omission and commission errors by cover class for each data
set. The impact of a specific sensor parameter on the ability to recognize a
particular class can be evaluated by comparing the errors listed in the first
column (Data set A. original TM data) of Table 3 with the errors listed for
the same class in the other columns, Examination of Table 3 in this manner

reveals that the reduction of either the number of spectral bands or the number

of quantization levels frequently increased the errors. In contrast, the
degradation of spatial resolution reduced many of the errors.

Table 4 summarizes the detailed information in Table 3 by presenting the overall
classification accuracy (i.e., the number of test plxels correctly classified
divided by the total number of test pixels) for each data set. The results can
be summarized as follows: the reduction of quantization level from eight bits
to six bits caused an overall 7Z decrease in attainable accuracy; the use of
only three spectral bands covering the visible and near IR portions of the
spectrum caused an overall 7% decrease in accuracy; and the degradation of "

spatial resolution resulted in an overall increase in accuracy of 4%.

DISCUSSION

Evaluation of a sensor's utility must be made in the context of the type of

information extracted from the sensor's data and the methodology applied to the

extraction. The classification of pixels into land cover/use classes was chosen
for the evaluation presented here as a type of information frequently derived
from remote sensing data. The selected methodology involved the independent
computation of training statistics for each of the four data sets and the
subsequent applications of the commonly used per-plxel maximum likelihood
classification rule. Thus, the classification decisions were based on the
pixel-by-pixel spectral properties of each of the cover classe_. _:.- _ctempt
was made to exploit textural, contextural, or spatial properties for identification
of the classes. Assessments of the results obtained by this selected methodology
cannot be directly extended to the extraction of different types of information

or to the application of alternate data analysis techniques.
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The results presented I. Tables 3 and 4 do indicate that the additional number

of spectral bands and quant_zatlon levels of the TM relative to the MSS increase

capabilities for the recognition and discrimination of land cover/use categories

by per-ptxel maximum likelihood classification. The refinement of spatial
resolution, however, seems to hinder classification. Thls result may appear
surprising, but Is not difficult to understand in the c_ntext of the data

analysts approach. The supervised delineation of training and test sites
resulted in the selection of field-center ptxels. Studies2, 5 have shown that
finer spatlal resolution often increases the within-class variability of field-
center ptxels and hence increases class overlap in spectral data space. The
degradation of spatial resolution tends to reduce within-class spectral
variability and facilitate the separation of classes by per-ptxel classification
rules. The results presented here again point to the need for the development
of new data analysis techniques which exploit the increased spatial and textural
information provided by fine resolution data. The other improved attributes of
the TM, the additional spectral bands and quanttzatton levels, appear to be of
immediate benefit in the context of a currently available and widely employed
method for analyzing remotely sensed digital data.

FUTURE WORK i

Wlth the completion of the "qulck-look" analyses, a more rigorous examination

of the effects of each TM sensor improvement on classification capabilities

will be performed using the full ANOVA design. Further processing of the

original TM data wlll produce all eight data sets required by the ANOVA design.
The ground reference data wlll then be digitized and geometrically registered

: to the eight data sets. The digitized reference data wlll facilitate the

random selection of training and test plxels from each set for each land cover/

land use category. The unsupervised clustering algorithm wlll be used to
derive training statistics for each category from each set. The test plxels
wlll then be classified and classification accuracies tabulated. The ANOVA

approach will allow the statistical testing of the significance of classification

accuracy differences between treatments. Thls approach glll result in a more
comprehensive assessment of the impact of each sensor improvement individually
and In combination wlth other improvements. _
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:_ ABSTRACT

: Spectraldata, simulatingthematicmapper bands 3, 4 and 5 were i
gatheredin salt and brackishmarshesusing a hand-heldradiometer. _I

Simpleregressionmodelswere developedequatingspectralradiance ii
::_: indicieswith total live biomassfor S. alterniflorain a salt marsh and :
• for a varietyof plant speciesin a b_ckish ma'rsh.Modelswere then

testedusing an independentset of data and comparedto harvestestimates
of biomass. In the salt marsh,biomassestimatesfrom spectraldata
were similarto harvestbiomassestimatesduringmost of the growing

: season. Estimatesof annual net aerialprimaryproductivitycalculated
;_ from spectraldata were within21% of productionestimatedfrom harvest

data. DuringAugust,biomassestimatesfrom spectraldata in the brackish
marsh were similarto biomassestimatedby harvestingtechniques. At
other times duringthe growingseason,spectraldata estimatesof biomass
were not alwayscomparableto harvestbiomassestimates. Reasonable
estimatesof wetlandsbiomassare possibleduringthe peakof the growing

•% season (August)using spectraldata similarto themat'Icmapper bands 3,
4 and 5 gatheredwith hand-heldradiometers.

INTRODUCTION

Basic to the understandingof wetlandfunctionand value is the
quantificationof energyfixation. Reducedcarboncompoundscomprising
macrophyticbiomassprovidethe energynecessaryto maintainthe hetero-
trophicorganismswhich feed upon them. Abovegroundbiomassrepresents
only a portionof total net primaryproduction(belowgroundproduction
can also be substantial)however,the fixedcarbon in this biomassis
the surplusavailableto heterotrophicorganismsand is readilydetected
with remotesensingdevices.

IV-251

: "i _,_,,_,_l__ _ FI{I_,I_,DtNG I'A(;F BLANK NOT Fff,_,,II,',D

i ,""

................................................................ :,._...;,_/.- ..................... i................................. _

: - ,.. _ _ . .- --_---- .-r -z,.......... _=---_"-L--- - ¢,_......._' .. ._,...... .._=-------.-.--_=-x_....... _ _-[i_..... _ " - ,.-"_-_ : ,7--_ ................ :....._"-'---"--

...... TSF0400000003-



Many saltmarsheson the easterncoast of the U.S. are dominatedby
a single plant Spartinaalterniflora,Loisel.(Reimold1977). S.
alterniflorabiomasscan _varyfromnear I00 to over 3000 gdw m"-=-depending

" upon substratetype, soil salinity,inundationfrequencyor other edaphic
_, factors. As interstitialwater salinitydecreasesto the 18-15°/,_o
.. range,S. alterniflorais graduallyreplacedby a varietyof plant
:. speciesTin general,the lower the salinity,the greaterthe diversity

of the residentplant population. The monospecificgramineouscanopies
_ of the salt marsh are transformedto brackishmarsh canopiescomprised
_- of mixturesof gramineous,broadleafand leaflessplants. Spatiallyand
._ temporallythe canopiesencounteredin the brackishsystemare complex

and dynamic. The morphologicdiversityof the plant communityproduces
an equallydiversespectralsignature.

i The study describedhereinwas designedto developsimpleregression
.... modelsequatingspectralradianceindicieswith plant biomass. The
_ -- radiancedata were spectrallysimilarto thematicmapper bands 3, 4 and
,: 5 and have been suggestedas being superiorto MSS wavebandsfor vegetation

monitoring(Tucker1978). Our first objectivewas to use these models I
_.. to predictbiomassand net primaryproductivityfor a saltmarsh and to
_" predictbiomassfor a brackishmarsh using groundgatheredspectral

i_!.\ radiancedata. Our secondobjectivewas to assessthe validityof our
._ biomassestimationby comparingthe spectrallyestimatedbiomassvalues
T_

_= with biomassestimatesobtainedby traditionalharvesttechniques.

.... METHODS

_c_ Salt Marsh

-, A portionof the CanaryCreek salt marsh in Lewes Delawarewas
_i_ selectedfor study (Figurel). The marsh was dominatedby monospecific
_'_ standsof S. alterniflorawith relativelysmall areas of Distlchlis

_(L.-TGreene. Occassionally,SalicorniaeuropaeaL. or Limonium
,_ sp. occurredmixed with S. alterniflora. Six transectsextending'from
: the creek edge to the upTa-ndwere established. The transectswere

spaced approximately210 metersapart and stationswere designatedevery
_; 30m along each transect. A total of 40 stationsfor the whole marsh
• were established.By establishingstationsin a systematicmanneralong

transects,we sampleda representativecross sectionof S. alterniflora
_ heightforms occurringwithin the marsh. Beginningon l_-MayIg8i and
_ continuingevery threeweeks until 9 October1981, four stationswere
_. selected,using a table of randomnumbers,from each transect. For each
=T of the eight samplingdates,24 stationswere sampledyieldinga total

of 192 for the season.

BrackishMarsh

A brackishmarsh near the headwatersof Old Mill Creek at Lewes,
_: Delawarewas selectedfor study (FigureI). The interstitialwater

salinityvariedfrom approximately15-18%o at the downstreamend to
about 12-10% o at the upstreamend. Plant speciescomprisingthe plant
communitychangedwith apparentsoil salinity. Four transectsextending
from the creek edge to the uplandwere established180 meters apart
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Fig. 1 Location of salt and brackish marsh
test sites near Lewes, Delaware.
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along the longaxis of the creek. Stationswere spaced at 30m intervals
along each transect. A totalof 29 stationswere designatedin the
marsh. The marsh was sampled3 times during the growingseason (June,
August,September)at approximately6 week intervals. At each sampling
date, 4 stationswere selectedusing a table of randomnumbersfrom eech
transectyielding16 stationsand a seasontotal of 48.

SpectralRadianceData Collection

Beforeharvesting,a GSFC Mark II hand-heldradiometer(Tuckeret
al. I981a)was used to measurecanopyradiancedirectlyover each area
to be harvested. The radiometercontainedthree wavebandsspectrally
configuredwith interchangeableinterferencefiltersto match bands 3, 4
and 5 of the Landsat-4thematicmapper. The sensorhead houseda red
band (0.63 - 0.69 _m, RED) sensitiveto chlorophyllconcentration,a
near infraredband (0.76- o.go _m, NIR) sensitiveto plant tissue
structureor biomassand a middle infraredband (I.55- 1.75 _m, IR)
sensitiveto leafmoisture. Data were recordedsimultaneouslyfor all
three bands.

No more than 5 days prior to the actualharvest,spect,ul rudiance
was determinedfor each plot. The radiometerwas leveledapproximately
1.5 metersabove the top of the plant canopy. In the brackishmarsh a
wooden step ladderwas employedto achieveproperinstrumentheight.
The radiancewas measured3 times over each plot. Radiancedata were
not collectedunder cloudy or very windy conditionsand were always
collectedwithin 2 hours of solar noon. Radiancedata were collected
duringlow tide, however,therewere occasionswhen small amountsof
tidal water remainedpooledon the marsh. Standingwater was avoided
wheneverpossibledue to potentialspecularreflectancefrom the water
surface.

Spectralradiancedata were transformedand expressedas a normalized
differenceof two bands as outlinedby Kriegleret at. (1969)and Rouse
et al. (1973). The red and near infraredradiancevalueswere combined
in the followlngmanner: '

Vl =_

where Vl is the vegetationindex,NIR is the near infraredband radiance
and RED is the red band radiance. A similarcombinationof the near
infraredand middle infraredbands was performed(middleinfraredsubstituted
for RED in the above expression)and termedthe infraredindex (If).
The infraredindex is used herewith the understandingthat the near
infraredand the middle infraredbands are spectrallydifferentand that
normalizationin thismanner may not be totallyvalid since adjacent,
spectrallysimilarbandswere assumedfor this transformation(Kriegler
et al. 1969). Indexvalueswere preferredto raw radiancedata because
the normalizationproceduretends to compensatefor changesin solar
irradiancecaused by seasonalchangesin solar zenithangle and/or
atmosphericconditions(Tuckeret a1. I97ga).

• !T
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HarvestingProcedures

._ After collectionof radiancedata, all vegetation(includingstanding
dead material)within a 0.25m2 framewas clippedat soil level at each
station. The plant materialwas baggedand returnedto the laboratory

; for processing. A I/3 subsample(bywet weight)was urawn from the salt
marsh samplesand sortedinto live and dead components. The brackish
marsh sampleswere sortedcompletelyby species,then only plant species

' with a large volumeof materialwere subsampledand finallyliveand
_" dead componentsdeterminedfor each species. Most plants in the brackish
._ marsh samplescontainedlittleattacheddead so the majorityof the dead
_. materialwas consideredas a compositeof the whole sample. The subsampling ,,

procedurefor both marsh types greatlyreducedprocessingtime. We felt
that a representativesubsamplewas sufficientto determinerelative

,_ proportionsof live and dead tissueand by retainingthe entire0.25m2
samplefor biomassdetermination,we preservedthe best estimateof

" biomass,given the oftentimesspatiallyheterogeneousdistributionof
_. biomasswithin the area sampled. Proportionsof live and dead tissue _i
:_ determinedfrom the subsamplewere then extrapolatedto the entire ,

biomasssample. All plant materialwas dried at 60°C to a constant _'
weight,weighedto the nearestO.Ig and expressedas grams dry weight !_

k_ per squaremeter (gdwm'2).
_.

RESULTS 1

_- Salt Marsh - BiomassEstimation 1

T_ Regressionmodels equatingS. alterniflorabiomassand spectral

_ radianceindicieswere developed_uringthe 1980 growingseason (Hardisky '
et al. 1983a). These models includedshort and tall form S. alterniflora

:, sampledfrom June throughNovemberusing the hand-heldrad_meter. _
Table l lists the models for the vegetationand infraredindicies. To
estimatelive and dead biomass,one solvesfor live leaf biomass(L) in
the first equation,for total live biomass(live leavesand stems,T) in
the secondequationand then substitutesthe L value (fromequationI)
into the last equationsolvingfor dead biomass(D). Throughthis

sequence,the necessaryparametersfor annual net aerial primaryproduc-

_o tivityestimation(totallive biomassand dead biomass)are calculated, i

-_ Figure2 depictsbiomassestimatesfrom harvestingand computed
from the vegetationindex for S. alterniflora. For live and total

biomass,the predictedvalueswere similarto the harvestvaluesthroughout
the year. Live biomassestimatesusing the vegetationindextended to
be lower than harvestestimatesduringthe first half of the growing
seasonand were higherthan harvestestimatesduringthe latterhalf of
the growingseason. Peak bionlasswas attainedin earlyAugust at which
time canopydevelopmentwould be the fullest. We would expectthe
greatestproportionof live biomasscomparedto dead biomassto occur at
this time and for the greatestamountof live tissue to be in the upper
portionsof the canopy. This may have contributedto the highervegetation

-J index biomassestimatesseen at peak biomassand thereafter. Dead
biomassdid not vary greatlyover the season (from260 to 400 gdw m"2)
however,decompositionof carry-overdead material (frompreviousgrowing

C_
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season,high in the canopy)and the concurrentadditionof dead material
from immatureculmmortalityand leaf senescence(low in the canopy)can
change the relativeverticalpositionof the dead biomasswithoutlarge
changesin biomasstherebyalteringreflectancefrom thiscomponent. It
would seem reasonablethat this change in the locationof deadmaterial
contributedto the lower live biomasspredictionsin the first part of
the season (whenmore dead materialwas in the canopy)and to the higher
live biomasspredictionsin the latterpart of the season (whenless
dead materialwas in the canopy).

Table 1

REGRESSIONMODELS FOR PREDICTINGS. ALTERNIFLORABIOMASS

Coefficient
of Determination

RegressionModel (r2)

Vl = .382+ .068 In(L) 0.75

Vl = .149+ .096In(T) 0.64

Vl = .760+ .055In(L/D) 0.88

II = .178+ .I04In(L) 0.87

II =-.185+ .148In(T) 0.76

II = .752- .078In(L/D) 0.88
,!

L - Live leaf biomass:T - Total live biomass;D - Dead biomass
Units on all biomass= grams dry weight per meter squared
n for all regressionmodels = 96
Vl = VegetationIndex;II = InfraredIndex

Harvestand infraredindexestimatesof live and total S. alterniflora
biomassare comparedin Figure3. The infraredindex estimatesof llve
biomasswere very close to the harvestestimatesduring the early part
of the growingseason. After peak biomass,the infraredindexestimates
of live biomasswere lower than harvestestimates. The reasonsfor the
apparentunderestimatesat the end of the growingseasonare not clear,
however,we would postulatethat the lower water contentof the plant
tissuedue to tissuematurityand increasedinterstitialwater salinity
at this time in the growingseasonwould cause an increasein the middle
infraredreflectanceresultingin lower infraredindexvalues. Overall
the infraredindex and vegetationindex estimatesof biomasswere similar.

Althoughthe mean biomassestimatesfrom harvestingand from radiance
indicieswere similar,considerablevariabilityexistedfor individual
measurementsduringsome parts of the growingseason. Figure4 presents
coefficientsof determination(r2) betweenharvestestimatesand vegetation
or infraredindex estimatesof live (a) and total (b) biomass. High r2
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values indicategood linearassociationbetweenindividualharvestand
radianceindexestimatesof bio_ss. Low r2 values indicateconsiderable
variationexistedfor some samplesbetweenthe two biomassestimates.
From May throughJune, the most disagreementbetweenharvestand radiance
index biomassestimatesexisted. Augustwas the best time period for
agreementof the biomassestimateswith the latterpart of the growing
seasonas _ whole being betterthan the first part. The harvestand
radianceindex estimatesof live biomasswere always in betteragreement
than the total biomassesti_tes. Harvestand radianceindex biomass
means in Figures2 and 3 were generallyvery simllar. This suggests
that during those periodswhen low r2 valuesexistedbetweenharvested
and predictedbiomass,the a_unt of overesti_tion and underestimation
were similaramong the 24 samples,yieldingmeans which were comparable.
When using radianceindex valuesfor biomassprediction,one should
scrutinizethe resultsfrom individualmeasur_ents to assurethat each
esti_te is reasonable,particularlyearly in the growingseason.

IO0_ ----VEGETATION INDEX ESTIMATE ,!_

----- HARVEST ESTIMATE I

I•• TOTALB,OMASSg.

< / _
z / "%0

- j
/

•.O--""-

oI_"/
MAym JUNE m JULY i AUG m SEPT mOCT

TIME (1981)
Fig. 2 Vegetation index and harvest esti_tes of S. alterntflora

biomass over the growing season. Bars representTEgT standard
er:_r of the mean are sho_ whenever they exceed the size of the
po'lnt s_bol. Points are slightly offset to improve readability.
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Fig.3 Infraredindexand harvestestimatesof S. alterniflora
blomassoverthe growingseason.Barsreprese_ing_standard
errorof themeanareshownwhenevertheyexceedthe sizeof the

.........pointsymbol. Pointsare slightlyoffsetto improvereadability.

Salt_rsh -Productivit_Estimation
!

.__ Usingthemean blomassestimatesshownIn Figures2 and 3, annual
;_, net primaryproductivitywas computedforthe $.elterniflorasalt

marsh. We employedestablishedproductioncalc--ulatlontechniquesused
t, widelyin saltmarshsystems(Table2). Thereis somediscussionas to
:-" theadequacyof thesetechniquesandwe recognizetheshortcomingsof

each, However,thesetechniquesarewidelyusedandwillyieldvalues
.. comparableto otherstudies.LlnthurstandRelmold(1978)providean

excellentcomparisonof variousharvestt=chnlquesforestimatingnet
aerialprimaryproductivityinestuarine_rsh systems.

Annualnetaerlalprimaryproductivityestimatesfor theCanary
.. Creekmarshare foundinTable2. The vegetationindexestimateof

productivitywaswithin4% of theSmalley(Ig58)harvesttechniqueand
.. no morethan21%differentfro_theothu;,techniques.The infrared
• indexestimatesof productivitywerew,thin20_of the _malley(1958)
@
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techniqueand were 4-5% differentfrom the other techniques. The key to
the agreementbetweenthe productivityestimatescomputedfrum harvest
and radianceindexdata was the highcorrelationbetweenpredictedand
harvestbiomassduring peak blomass(August). For all but the peak
standingcrop method of productionestimation,successivepositive
incrementsillbiomassare summed thrQughoutthe growingseason,normally
culminatingat the point of peak biomass. Therefore,the estlmatienef
peak biomassis the singlemost criticalmeasurementin determining
annual production.

Table 2

ANNUALNET AERIAL PRIMARYPRODUCTIVITYESTIMATES
FOR SPARTINAALTERNIFLORAIN CANARYCREEK MARSH

RemoteSensin9Estimate

Method HarvestEstimate Vl II
J

peak standingcrop 517 600 489

Milner& Hughes (1968) 523 661 498

Morgan (Ig6l) 517 600 497

Sm_!Iey (1958) 634 661 506 _
'i

all valuesare grams dry weightper squaremeter per year
VI = VegetationIndex;II = InfraredIndex

BrackishMarsh - Model Development

Modelingthe relationshipbetweenspectralradianceIndiciesand
liveaerial biomassin brackishmarsh plant communitiesrequiredconsid-
erationof diversemorphologicchar'acte:.isticsamong plantsresidingin
the same comunity. To illustratethis point,Figure5 shows the linear
relationshipbetweenvegetationindex and 11ve biomassfor a varietyof
wetlandplants. Ira,Polygonum,and Solidagorepresentbroadleafor
deciduouscanopies-_-ndexhibitrapid increasesin vegetationindexfor
relativelysmall changesin biomass. This characteristicsuggeststhat
the spectralindexcan becomesaturatedrapidly. Structurally,these
canopiesmaintainmost leaf surfacesin the horizontalplane and generally
forma completecanopycover which reducesor eliminatesexposureof
dead componentsor soil backgroundto solar irradiance. This combination
of canopycharacteristicsyields a very absorptivecanopy in the red
regionand a very reflectivecanopy in the near infraredregion,thus
the high vegetationindex relatlveto the amountof live biomasspresent.

The oppositeextremeto the broadleafcanopywould be the leafless
canopiesrepresentedby Salicorniaand Scirpus. Both Salicorniavirginica
and Scirpus_ possess-erect,leaflesss_ems with _i:_ tissue
in the verticalpTane and primarilysoil backgroundand dead plant material
in the horizontalplane. Normallythese canopiesare very open with soil
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L, _" surfacecharacteristicspotentiallycontrlbutin9greatlytQ the:, observedspectralradiance.
i ",

E ii,_ The third canopy type representedin Figure5 is the r#'amineouscanopytype of SpArtinaand Typha. S2artinaalternifloraexhibitsalternate
i. leave,_a_h-_t-I)elengt-I_o-6Tthe-stem-v_he-r-e-as-T._pllq_angustlf.El_iahas basal

, leaws. Both plantsform canopieswith portTCn_-b'fleaves'in-thehorlzontal
L. and in t',;ev_',:,,calplane, S, alternifloraexhibitsa broadrange of
. canopy confl_ratlons as a r_u_-_o_f-fts'w_de environmental tolerart:,e.

limits. Both _lant canopiescan maintainsubstantlalquantitiesc,f_d
i " materialwithin the canopy. The amountof live leaf tissuedeter_i,e
!. T to what degreedeadmaterlaland sell background will Influencespectr_l

i . reflectance. Theoretically,the occurrenceof flat leaves(portionsof

which may be horlzont=1)In the gramineouscanopywould place them
somewherebetweenthe broadleafand leaflesscanopiesIn termsof an
increasein vegetationindexvalue for an increaseIn blomass(i.e.an

_: _ntermedtate slope) In practice this does not occur because the measured

;: vegetationindex representsthe compositeof reflectancefrom vegetation. (llveand dead) and the soil. In the case of the gramlneouscanopy,the
:. dead vegetationand sell are oftentimeswell 111umlnatedand contribute

' ".... significantlyto the measuredvegetationindex. The net effectIs a
lesseningof vegetationindex increaseswith inc._easingblomass.

i',.,L.

:_;'

"a X

z__o -" .-
: tL

• io

. 0 iO

- LIVE BIOMASS (gdw m-2)

-;i_. Fig, 5 Cqmpart:,on of the relationship between vegetation index values
' : and amounts of llve btomass for a variety of wetland plants. Iva,

--: .:. _ and Soltdago represent broadleaf canopies, ?y_ha and S__arttna
_",. (dashed11nes)representgramlneouscanopies_,ndSallcor-_aand
_:- Scirpusrepresent._,aflesscanopies.
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Brackishmar._hplantcornmunitle.sare often composedef num_.rous

plant specieswith morphologiesrepresp.ntedby each of the group_discussed.
The problemof equatingspectraldata with live bi_ma_sbecomesa function

,, of the speciescompositionof the communityIn question, At present,we
_. lack sufficientdata for modelingspecificmixture;;_f the 3 canopy
;. types. So as a first attemptat equatingspectralradianceindicie.sand
: live aerial biomass, we,comh'Ineddata from each of the ilorphol(}g'lc
,> groups into a slngl_ model. These data were gathered from stands of

, Typha angustlfolla,Spartlnaalterniflora,Scl_/pu_nlneyi and a broadleaf

" The areas were sampledmol_thly'_nf_l'aY_tht,i)_Au',q_s_w]th_-r_a(_ceand
• biomassdata being gatheredident'Icaltn the brackishmarsh samples
-. describedin the methods.

.:. BrackishMarsh - Blpl21as_sFst'Imatjo!L

- The brackishmarsh sampledfor biomassestimationwas diverseIn
.. terms of plant speciesand seasonallydynamicwith respectto dominance.
, Table 3 lists the abundance(expressedas a percentof the total number
• of samplesin which the plant speciesoccurred)and dominance(expressed

,/ as a percentof the total numberof samplesin which the plant species
; was dominantin terms of biomass)of each plant speciesencountered

--" during the study. The three most abundantspecieswere S _rtina atens,
.... • ______ Eleocharissp. and Acnida cannabina. Grass speciesdomi most
': samplesduringall t}_'ee.saT_p-_g--p'eriods.There was a slight increase
_,- in dominanceby broadleafspeciesin Augustwhen most broadleafplants
;- reachedpeak biomass.

-;- Simpleand multipleregressionmodels equatingtotal live biomass
z_ (all specieswithin sample)and the spectralradianceindicieswith
,_ other canopy descriptorsare found in Table 4. Mul+ipleregression
_,_ modelswere includedfor comparisonbecausethe percentof total live
_:_: biomasswhich was broadleafbiomass(B) and total live biomassexpressed
'" as a percentof live plus dead biomass(P) were consistentlyimplicated
_. as importantparametersfor best fit models. Consideringthe very
•. differentspectralcharacteristicsof broadleafcanopiesrelativeto the
'; gramineousand leaflesscanopies,and the potentialimportanceof dead
• vegetationin determinings_ctral radiancein gramineousand leafless

canopies,it was not surprisingthat theseadditionalparameters(B,P)
" significantlyimprovedthe linearfit (r_ values)of the models.

.; Harvestand spectralradianceindex estimatesof total live biomass
. for the entiregrowingseasonare comparedin Table 4. In the case of
::- the vegetationindex,the inclusionof B and P reducedthe accuracyof
'_- the biomassestimate whereaswith the infraredindex these two parameters/,

' apparentlyimprovedthe blomassestimatebut not to any significant
" degree. The annual live biomassmeans predictedwith radianceindex
:. data were very similarto the live biomassestimatedby harvesting. A

pairedT-test suggestedthat most harvestand predictedmeans were not
, statisticallyseparableat the 0.06 level.

"Z
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Table 4

REGRESSIONMODELS EQUATINGRADIANCEINDICES
AND BRACKISHMARSH CANOPYPARAMETERS.

Annual Live Biomass(gdwm"_)

M°dela Harvestb Predicted Difference

T _ (3278)VI - 1939 69l(68) 647(33) 45

T _ (4319)VI - (7.12)B- 2682 691(68) 550(49) 142"

T = (4025)VI - (7.16)B+ (1.85)P- 2562 691(68) 553(49) 138"

T = (3877)II - 2_81 691(68) 727(45) 36

T = (4242)II - (4.06)B- 2402 691(68) 680(51) 12

T = (3902)II - (4.41)B+ (2.35)P- 2294 691(68) 674(52) 18

a T = total live biomass(gdwm'2), Vl = vegetationindex, II = infraredindex,
B = live biomassof broadleafspeciesexpressedas a percentof total live biomass,
P = total live biomassexpressedas percentof "oral liveand dead biomass,
n for all models is 57.

b Valuesare the mean and one standarderror, in parenthesis,of 47 samples.
Difference= the numericaldifferencebetweenthe harves_and predictedmeans.
An asteriskindicatesthe differencebetweenmeans was statisticallysignificant
at the 0.05 level.

The regressionmodelswere then used to estimatebiomassat each of
the 3 samplingdates (Table5). Althoughtherewas good agreement
betweenannualharvestand predictedbiomassmeans, substantialdeviation
was noted over the growingseason. Vegetationindex biomassestimates
were very good duringJune and Augustbut unacceptableduring September.
The infraredindexonly producedacceptablebiomassestimatesduring
August. The failureof the models to yield good biomassestimates
during Septemberwas probablyrelatedto the rapid senescenceof the
marsh plantsat this time. The brackishmarsh, unlikethe salt marsh,
containsannualbroadleafplantswhich after seed productionsenesce
rapidly. The largeramountof dead vegetationin the canopyand the
senescenceof broadleafleavesalteredthe canopyspectralcharacteristics
sufficientlyto invalidatethe predictivemodels at this time of year.
The infraredindexestimatesof biomasswere high in June and low in
September. The high percentageof moisturein young, productiveleaf
tissue (June)as opposedto the low percentageof moisturein dead or
senescingleaf tissue (September)probablycontributedto tl_eobserved
fluctuationsin biomassestimationfor the infraredindex.
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DISCUSSION

,, Other iIivestigatorshave found good correlatlonsbetweenmarsh
plant biomassand reflectancein the red and near infraredspectral

< regions(Drake]976, Bartlettand Klemas1981). We have reaffirmedthis
: relationshipfor S. alterniflorausing thematicmapper bands 3 and 4.

Previousstudiesl-n-sa__ (Buddand Milton1982),pastureland
(Curran1982)and in agriculturalvegetation(Tuckeret al. 1981b)

-- suggesta strong relationshipbetweenplant biomassand the combination
of red and near infraredspectraldata. These studiesalso imply that

:' blomasscould be predictedusing spectraldata. Very few investigators

"i have actuallytestedmodelsequatingbiomassand spectraldata using a ,.
data set independentof the data.set used to establishthe model.

" Jensen (1980)workingwith the salt marsh shrub (Halimioneportulacoides)
: and Curran(]980)workingwith pasturevegetationhave d_e this with
:: reasonablesuccess Our data also suggestthat spectralradiancemodels
7 are usefulfor nondestructiveestimatesof saltmarsh biomass.

The brackishmarsh regressionmodelspredictedbiomasswell during i
" the peak of the growingseason. The models presentedrepresentan _.

oversimplificationof the complexinteractionsof liveand dead vegetation, i_
._ horizontaland verticalleaf area index,and soil reflectancewhich are
: compressedand treatedas a single reflectingsurface. Brackishmarsh

=:_ canopiesare normallymuch deeper and much more diversein terms of "
plant morphologiesthan salt marsh canopies. It is, therefore,very I
encouragingwhen representativesof the 3 most commoncanopytypes _I

_ measuredin relativelypure standscan be combinedinto a regression I
-_'; model which yields good estimatesof biomassfor mixed plant stands.
: The hypothesisthat plant morphology(canopytype) is more importantin :
_: determiningmeasuredspectralradiancethan considerationof each particular k
-,] plant species,appearsto be valid. For example,_canopies were i

includedas inputto the predictiveregressionmod_yet in the data i
;_ set used to test the model, no _was present. On the other hand,
_,. many plant specieswere found in the test data set (notablyS. patens,
- Eleocharissp., D. spicataand P, punctatum)which were not l-n-c_6[e_din

the model develo_ent data set.--Thedissimilaritiesin speciescomposition _
;. betweenthe model developmentand model testingdata sets apparentlyhad
._ littleeffectupon the outcomeof live biomasspredictionsfrom radiance

indicies. )

-_ The vegetationindexwas usuallya betterspectraltransformation )
; for biomassestimationthan was the infraredindex. The vegetation
: indexhas beenwell establishedas a usefultransformationfor monitoring I

vegetation(Tucker1979,Tucker et al. I979a,b)but the infraredindex
is relativelynew. Kimes et al. (1981)and Markhamet al. (1981)were

_" among the first to work with the middle infraredband (TM5) using hand-
held radiometry. In both studies,they concludedthat the middle infrared
band containedthe same informationas the red band. They did acknowledge _
that their samplingprecludedany water stressand that the middle
infraredband shouldundergoadditionaltestingwhen changesin leaf

_ moisturewere expected. More recentwork by Hard,skyet al. (1983b)
% suggeststhat the infraredindexmay have moisturedetectioncapabilities
" and therefore,will probablybe usefulin wetlandsystemsfor discriminating
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vegetationexposedto varyingsoll salinityconditions. We believethat
additionalresearchmust be conductedto determinethe worth of the
infraredindex for vegetationmonitoring. The large seasonalvariation
in biomasspredictionsin the brackishmarsh by the infraredindex
suggestmoistureconten_or the moisturecontrastbetweenlive and dead
vegetationmay have contributedto the results. If our observationsare
a resultof canopymoisturedifferences,thiswould indicatea larger
seasonalfluctuationin canopymoisturerelativeto biomassthan in

, chlorophyllcontentrelativeto biomass. This could potentiallybe a
very usefultool in monitoringwetlandsvegetation.

CONCLUSIONS

Regressionmodelsequatingtotal live biomassand spectralradiance
indicieswere developedand testedfor salt and brackishmarsh vegetation.
Comparisonsof biomasspredictedusing spectralradianceindiciesand
biomassestimatedby traditionalharvesttechniqueswere very similar
for S. alternlflorablomass. The vegetationindexwas slightlybetter
for pYedictingbiomassthan was the infraredindex. The best a_reement
betweenpredictedand harvestedbiomassoccurredduringAugust(at peak
biomass)with a considerableamountof variabilityat other times of the
year. Annual net aerialprimaryproductionestimateswere also very
similarusing either predictedor harvestbiomassestimates.

Three morphologicallydistinctcanopytypeswere identifiedin the
brackishmarsh vegetation. Data gatheredfrom broadleaf,gramineousand
leaflesscanopieswere combinedintoa singleregressionmodel for
estimatingbrackishmarsh biomass. The modelsprovidedsimilarestimates
of biomasscomparedto harvestestimatesof biomassduringJune and
August for the vegetationindexand only duringAugustfor the infrared
index. Percentbroadleafbiomassand percentlive biomasswere identified
as being importantparametersfor determiningtotal biomasswith spectral
data. In practice,these additionalparametersdid littleto improve
llve biomasspredictionsover the live biomasspredictionsusing only
the spectralradianceindex.

The thematicmapper bands 3, 4 and 5 used in this study successfully
providedthe spectralinformationnecessaryfor nondestructivebiomass
estimatesin coastalmarshes. The ground-basedradiometrictechnique
describedcan providethe data necessaryfor estimatesof productivity
for somemarsh systems. Spectraldata gatheredwith hand-heldradiometers
from low altitudeaircraftand thematicmapper simulatordata are presently
being testedusing the modelsdescribedin this paper. Preliminary
resultsindicatethat with an atmosphericcorrection,the modelswork
well with spectraldata gatheredfrom higheraltitudeplatforms. It
seems plausiblethat the modelspresentedhere can be modifiedfor use
with thematicmapper spectraldata.
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A PRELIMINARYCOMPARISONOF THE INFORMATIONCONTENTOF DATA
FROM THE LANDSAT4 THEMATICMAPPERAND MULTISPECTRALSCANNER

John C. Price
USDA-ARSHydrologyLaboratory

Beltsville,Maryland

I. INTRODUCTION

In the past two decadesgreat advanceshave occurredin man's abilityto
monitoragriculturefrom space. The 1972 launchof Landsat1 began a new
era as the multispectralscanner(MSS) acquired80 meter spatidlresolution
data in four spectralchannelson a repetitivebasis. This instrumenthas
subsequentlybeen flown on Landsats2, 3, and the recentlylaunched
Landsat4.

This lattersate111tealso carriesan improvedImager,the thematicmapper
(TM),which acquires6 spectralchannelsat 30 meter resolutionas well as
a thermalIR channelat 120 meter resolution. Becauseboth MSS and TM can
acquiredata slmultaneouslyit is possibleto make directcomparisonsof
the advantagesand disadvantagesof the new instrumentvis-a-visthe old.
In this paperthe informaticncontent_of the two instrumentsis compared
for areas in a representativeagriculturalregion. Althoughthe parameter
"information"does not equate in an obviousway to the value or utilityof
the data, it providesa basis for physicalinterpretationin the same
sense that the mathematicallydefinedvariables"brightness,""greenness,"
"yellowness,"etc., are ascribedsignificancein currentresearch. By
focusingon the redundancyof the digitaldata the estimationof
informationcontentsuggestspossibilitiesfor algorithmsdealingwith
subsetsof the imagedata, as well as transformationswhich reduce the
total volumeof data to be analyzed. To the degreethat a satisfactory
descriptionby a reduceddata set is possiblethere exist Implications
both for designof future sate111teinstrumentsand for analysis
procedures.
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II. THE MATHEMATICALFORMULATIONOF INFG_ATI_DNTHEORY
i.

The choiceQf wQrd._used to describ_the ,_,ubjectof informationtheoryhas
an unfortunatehistorywhich naturallyleads to confusion. I will attempt
to describethe existingsituatinn,which presentsonly undesirablecholceB
for identifyingthe mathematicalquantitywhich is the principal_ubjectof
this paper.

The classicpapers in informationtheorvd,_tefrom the late40's and early
50'_. In tilesepapersShannonz of Bell"L,_nqratories,introducedthe
quantity"information"as definedby

II _-. _Pi l,°g2(Pi) (bits) (i)

where p Is 'theprobabilityof a specificnumericalvalue in a seriesof
numbers(i.e.,measurements).Althoughthis definitionpertainsto both
continuousand discretedata, it is most commonlyappliedto discrete
data. Thus for a seriesof randomO's and 1's transmittedover a ¢

I communicationlineone finds 1 bit of informationper digit.
• i
!

.r H = -I12 x Log2(I/2)- 112 x Log2(1/2)= i bit per digit
,.i'

:ihannon'sapplication,a)idthatcommonlydiscussedtoday, is t(_the
"I st(,rage,communication,and retrievalof digitalinformation, It naturally ;
"_ falls in the realm of signalprocessingand computertechnology. The word 'i

'I_i "information"was generallyused in early literaturein the field,e.g., ,
-L Schwartz2 ;,i

L

i Implicitin the definition(1) is the fact that a highlyvariableor random
.. signalcontainsmore informationthan a constantor low amplitudevarying
_ signal. More generalformulationsof informationtheoryalso considerthe :;i

conditionalprobabilityof a seriesof numbers,with a random sequence
resultingin more informationthan a predictableseries. Thus the

_. technicaldefinitionof informationis directlyassociatedwith the
disorderor randomnessin a seriesof numbers•

This definitionis somewhatcontraryto the conventionalmeaningof the
word, resultingin possibleconfusion Thus by definition"noise"or _
staticfrom a radio carriesmore informationto the listenerthan a com-

plete musicalpiece,which could be completedby memoryby the listener
with the radio off, once the first few bars are recognized. Similarlya
"noise"imagecomprisedof highly texturedspeckleswould co_itainmore !i
"information"than a pictureof a checkerboard. (

PossiblY3realizingthis sourceof confusionShannon(apparently,i.e.,Ter Haar ) later adoptedthe word entropyto describethe previously
definedquantity. Thus (TerHaar, p. 161) "entropyhas figured ,arg.lyin
recentdiscussionsin informationtheory. It must be stressedhere ti_at
the entropyintroducedin infm_nationtheoryis not a thermodynamical
quantityand that the use of the same term is ral_li-_rn_isleading"(emphasis
in the original).
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The originaluse and deflnltlanof the.ward entropydate.st_ the period
1850-],860,whe.nClausiusand Kelvin consideredthe.mechanlcalwork which

,.: couId be r.xtractedby a he.atenginefrom a workinqfluid ._uchas ._te.am,
-." rhi._definitionI._

- S _ , (doulenlK)

"i!

whe.r_dq 'isan e.lem(+.ntnf energyand I'is temperer.urn.Thf_deflnitlonI!;
.... appropriatefor a r(:ver_'lhleprocess&a more cQmp'l'ic,_tedform 'Isnec_,ssary
_ when Irreversll)'leprocessesare considcre.d•In the 1930"; principle,;
.... Introducedby quantummechanicsdemandeda more generalf(}rmulationef the '

:' conceptof entropy, _hi,_led to a theorybased on the foun(latiGncof ,:
; statisticalmechanics• The appropriatedefinition'is

.; H = -_pi log Pi (2)

:_ where the Pi are probabilitiesassociatedwith energystates (i) _f the '_
• physicalsystem• For a brief yet completedescriptionsee Kittel . The i
. physicist'sentropyalwaysinvolvesphysicalvariablesrelatingto the
: .- forms of energy,with the quantitiesin the dimensionlessform (2) being
..... expressedas a ratio to Planck'sconstant. The conceptof entropy
:" occupiesa centralplace in there,)dynamicsand statisticalphysics,

+)+l
I ,., ,

... Until the presentday the ex'stenceof two conflictingdefinitionsof
:--. "entropy"has not been troublesomebecausethe intellectualdiscipline_ i,
". have been oroadlyseparated- one is concernedwith forms of energy,the

other with communicationand storageof data. This situationis about to
E_ change as the effortsto producemolecularsize computerlogiccircuits,
:_.,.. i•e., "chips",will force the considerationof both subjectareas at the
::. same time In generalthe thermodynamicentropyhas many physical; L' • 'i

.- applicatiop-,the engineeringentropyvery few.
•

Evidentlyat the presenttimeno satisfactoryword applieswithout
". reservationto the quantityH as given in equation1. In this paper I

will use the letterH and the technicalword 'information'when referring
."; to the quantityof equation1.

"_ Ill. COMPARISONOF INFORMATIONCONTENTOF THE MSS AND TM ON LANDSAT4.

A prime concernin the estimationof H for imagedata is the type of
landscapebeing viewed• For example,a uniformfeaturelessscene,such

:= as a desertarea, has a low value for H, while a busy scene,such as a
: city, has a highervalue of H. Similarlya scene havingno spectral

• variability,i.e., all wavelengthchannelshavinga commonbrightness
value at each point - a black and white scene,has a lower value for H
than one in which brightnessvalues differfrom one spectralchannelto

: anotherin a spatiallyvaryingway- a multic_doredscene•
",.

In this reportH is computedfor subareasfrom a scene obtained
.: simultaneouslyby TM and MSS ove_"an area centeredat 36-02 north,90-02
•. west in northeastArkansas• Ine acquisitiondate was August 22, 1982.

!
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Thi_ areawas ,_e.1_ctedas a ta_t site becau._eit i._repr_._entatiwaf i
intensiveagricultureIn the UnitedState.s,havingr_lative.Iy_mall field._,
lO to 80 acre_, and a 9r_At diwrsity of field crops. IL i._nat reprn,_nt_
ativeof drylandaqricultureIn the Gr_at Plain_,wh_r_,fi_,Id_ar_ much
larqe.rand severalcrap._accauntfar ma_t agriculturalland u._e, In
generalone wauld e.xp_ctthe thematicmapper to leadto _mallnradvantage;_
c(_mparedto MSS in siicharean,althoughthi._remaln_ta be shown, In urban
areas the TM wauld prohablyyield even greateradvantagenaver the MSS
becausethe high spatialresalutianof the TM re_olvenmany cultural
featuressuch as suburbandev_,Iopment,_,city blocks,etc., which would be
averagedout by the coarsere,solutionof the MSS.

!I

The inf(}rmationper pixel was computedfor a numberof areas within the i
scene in order to oI_taina statisticalrepresentationof the variability
in the 185 x 185 k,_"area. Calculationsare for areas of 256 x 256 I
pictureelementstaken in croppedareas, i.e , water, swamps,forests, !' I
etc., were avoided. Table i presentsthe computedvalues of H for the 6 _I
reflectivechannelsof the TM (i=5, l), and the 4 channelsof the MSS.

Table 1.

[- -MuTt'fg_e'c't-r'_"-_'C66ner ....

ChannelI 3.48 4.04 3.62 3.30
2 4.15 4.34 4.24 3.75
3 5.36 5.46 5.08 4.88
4 4.75 4.75 4.54 4.43

Total 17.74 18.59 17.48 16.36

b. ThematicMapper

ChannelI 4.30 4.63 4.72 4.09 I

i
2 3.g2 4.23 4.33 3.77
3 4.66 4.77 4.84 4.25
4 6.84 6.63 6.11 6,_7
5 5.51 6.23 6.34 5.43
L6 5.24 5.45 5.51 4.82

Total 30.47 31.94 31.85 28.63

MSS and TM informationcontentper pixel for 256 x 256 areas in the
August22, 1982, scene from northeastArkansas. In this preliminary
analysisthe areas do not match; this is not possiblefor 256 x 256
areas due to the differenceof scale.

For historicalreasonsthe NASA nomenclaturefor the order of the spectral
bands is out of sequence. Thus in the NASA orderingthe sequence(1, 2,..,
6, 7) correspondsto wavelengthvaluesdescribedroughlyas 0.4, 0.5, 0.6,
0,8, 1.5, 11., and 2.2 micrometers,so that bands 6 and 7 are out of
order. In this paper we shall refer to the bands in logicalorder (L),so
that NASA bands 6 and 7 becomeL7 and L6, respectively. The inclusion
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,_;_.:, of the thermal infrared data (L7) in the, analysis would bn math_mat.ically
._, straightfarward,However,the phy._icalpraces,_sa_cauntingfar radianc_

values in the thermalIR ar_ qultP,differentfram t,_,os(lin the vlslbl_and
._- near IR, so that a mixed analysisI_ patp.ntiallym'l._leading6, Chann_,ls
. i-5 and L6 mea_urp,the rnfl_.ctP.dsolarradiationfrom each ._patan th_
.' ground,providln__,s._entiallya picturp,of the ._urfac_.,In cantra,_t
i' channelL7 m(la,_ure_(:mitredthermalradiatianfrom the _urface,which
," result,_from a balancebetweena numberof energy fluxes,includingh_ai:

flux 'Intothe ground,heatingby ab,;orbedsolarradiation,tran._ferof
energy from the .qroundas sensibleheatingof the atmusphere,etc, The

." recolmlendedanaly._isprocedurefor the thermalIR chann_linvolves
. modelingsurfQcete,_iperatureresponseto solar heating,meteorological
+ effects,etc,I, _, _, A formalismis thenrequiredfo" going backward
' from the modeled temperaturesto the surfacecharacteristic,_which
:... producedthese tempera.ures. In the presentwork we omit L7 .tomthe
.. analysis,recognizingthatL7 providesadditionalinfor_;ati(..,because'It
_. representsan additionalphysicalprocess.

- As table I illustratesthe informationcontentof all bands of NS$ ..',_..,TM

::'_ is considerablybelow the potentialcapabilityof the sensor/tran_i,,it:er
,_ system. This resultsfrom the bunchingof data in a moderatelynarrow

o :._ gaussiandistributionabout a mean value in the lower half of the dynamic
• range of each instrument. This narrowingand localizingof the data

....; valuesresultsin a lowervalue of H. Althoughthis effectmay seem to
::: representa defectin the instrumentdesignspecification,this view is.;!:

,:." oversimplified.An instrumentwith a dynamicallyvariablegain could
"',_ continuouslyadjustto the range of input radiancevalues. This would

_ii!!. result in an increasein the informationcontentof the da_.a.Higher
! :_- radiancevaiuescould be expectedwhen the sun is high in the _.y, lower
':_,_ values in winter. In fact this has been done for scannerson the defense
,: meteorologicalsatellites. However,this additionallevelof complex;ty
_I!T increasescost, and more importantly,complicatesgreatlythe task of
' providingaccuratescientificcalil_rationfor the data.

..,. An alternativeand much simplerprocedurewould be to ._ncodethe sensor
i • data, e.g., by subtractingoff the minimumvelue of the data and transmit-
i ! ting only enoughbits to cover the dynamicrange of the result. For

.- example,a data set havingvalues in the range 73-125could be sent as
: .:. values 0-53,resultingin a 6 bit transmissionrather than the 8 bit range
_Z presentlyused. The constantoffsetwould then be r,e_nsertedduring ground
; processing,leavingthe output productunaffectedin the eyes of the user.
_: Coding proceduresof this typewill probablybe used in future "smart"
• satellitesin order to reduce the cost of the satellitetransmitterand

" data storagedevices. The tradeoffof computercomponentsand softwarein
place of satellitehardwarebecomesmore and more desirableas the micro-

'_!. electronicsind,'stryevolves.
',T

:." The nw)ststrikingfeatureof Table I is the fact that TM bands 5 and L6
_ ..-. are superiorto the shorterwavelengthbands numbers1, 2, and 3, in that
_, they have a higher informationcontent. This is a key factor in the
: conclusionto be developed: the TM providesa substantialimprovement

) ? over the MSS.
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Although the results expressed in Table 1 are suggestive they do not
representa definitivecomparison. It is well known that substantial
redundancyexist_betweenthp.spectralbands in LandsatMSS data. This
redundancycorrespondsto a smallerinformationcontentthan that obtained
by consideringthe b_nu._separately. The estimateof this redundancymay
be carriedout in severalways, but the standardtechniquefor multi-
spec_I:alimageryis to apply a principalcomponentstransformationto the
data_-u. A lineartransformationof variablesutilizesthe correlation
coefficientsof the variousspectralchannelsto producenew variables
which are orthogonalto each uther in the _ense of an innerproduct,and
alignedwith the dominantaxes of variabilityin the data. Redundancyof
the originalspectralchannelsequateswith decreasedvariabilityin some
of the new ones. Table 2 illustratesthe informationcontentof the
transformedvariables,where the new componentsare orderedin terms of
decreasingvariance,as is conventional. We note that the transformed
channelsare combinationsof those of Table 1, so that a one to one
corresponeencecan not be establishedbetweenthe new and the old channels
of data.

Table 2,

P.C. 1 5.77 5.81 5.78 5.40
2 4.32 4.61 4.59 3.97
3 2.44 2.59 2.43 2.46
4 2.20 2.17 2.27 2.19

TotaI 14.73 15.18 15.07 14.02

b. ThematicMapper

P.C. 1 6.86 6.67 6.56 6.33
2 5.86 6.41 6.13 5.73
3 4.27 4.45 4.80 3.69
4 3.36 3.52 3.44 3.21
5 :?.63 2,60 2.67 2.50

L6 2.25 2.27 2.25 2.07

Total 25.23 25.92 25.85 23,53

Information content for the subscenes of table 1 followin9 a
princiPalcomp_onent_s_transformation.

Evidentlythe redundancyof the originalspectralchannelsdoesproducea
substantialoverestimateof informationin the calibrateddata. The three
bits differencefor MSS correspondsto a factorof 2_ = 8, while the
5 bit decreasein the Informationfor TM (f_'omapproximately30 to 25)
correspondsto a factorof 25 = 32 in the numberof probablecombinations
of digitalvaluesin the respectivedata sets.

A secondform of redundancyexists in imagedata: that due to spatial
correlations. If the Landsatdigitalvalues are in a randomsequenceasb
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the scannerimagesthe earth then each individualpixel has no predictive
value for its successor. C_nversely,if largeareas (longsequencesof

i,_ values)have a uniformreflectivityvalue (constantdigitalvalue)then
with high probabilit_of successone may assignto each pixel value that
of its predecessor. The reductionin informationdue to this effectwill

be estimatedhere by use of the differenceoperatorwhich replaces,'each
value (exceptthe first of a sequence)by its difference. Thus xi =
xi - xi_1 where i indicatesthe pixel numberalong a line. This
replacementis calleda delta transformation11, The informationcontent
of the differenceddata is given in Table 3.

Table 3.

a. Mui'tispe_tralScanner

1 4.50 4.07 4.57 4.38
2 3.64 3.73 3.81 3.37 ,_
3 2.44 2.59 2.43 2.46 I
4

Total 14.73 12.56 13.08 12.40

b. ThematicMapper

1 5.09 5.46 5.38 5.19
2 4.72 5.47 5.00 4.59
3 3.74 4.15 4.04 3.52
4 3.11 3.43 3.36 3.16
5 2.63 2.60 2.67 2.50
L6 "_'T",",",",__.-2"[ _

Total 21.49 23.38 22.70 21.03

Informationcontentof principalcemponentdata after spatialdif-
ferencing. Underlinedvaluesare from table 2 - the spatialdifferencing
producedan apparentincreasein the informationcontentof these channels.

For both MSS and TM the spatialredundancydue to large uniformfieldsis
evidencedby the reductionof H in the differenceddata. This is most
apparentin the first and secondprincipalcomponentsof the transformed
data. In son_._of the lowerorder componentsa reversesituationexists.
These componentsare dominatedby low levelrandomvariationswhich
representnoise,eitherin the scanninginstrument,or causedby small
variationsof spectralresponsedue to insignificantdifferencesin
surfacecover. For example,localizedpatchesof weeds, crop density
variationsdue to differingsoils,scatteredbushes,etc., cause minor
variationsin surfaceappearancewhich are essentiallyuncorrelatedwith
large scale land use and surfacetype. In the principalcomponents
analysisthese low levelrandomvariationsare representedin the higher
numberedcomponents. Spatialdifferencingthese componentsis like
differentiatingnoise - the amplitudeof the differentiatedsignal is
greaterthan that of the original. For this reason the lower of the
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values (H, or dHIdx) is given in the third table, with the H values, as
opposed to those from the delta transformation, underlined.

It appears that the higher precision of the TR (8 bits as compared to 7
for MSS1-3), does produce incremental improvement in the ability to
r,esolve spatial differences. Note that in only 7 of 28 cases does spatial ',1
differencingincreasethe computedinformationvalue for the principal i

k componentsof the TM data. )

The principalresultof the analysisis expressedin the row "total"for
the two instrumentsin Table 3. These numberspermitthe assessmentof the )
efficiencyof the two instrumentsas given by the ratio (totalinformation _i
in the data)/(possihleinformationin the data). For the scene studied I
this ratio is of the order of 13/27 = 0.48 for MSS, and 22/48 = 0.45 for !!
TM. The numbersare esentiallyequal so the efficiencyof the TM is i

i
equivalentto that of the MSS. ii

A factorof some importancehas not been studiedto this point. Some of
the variabilityin the digitaldata from both instrumentsis due to instru-
ment noise and to surfacevariabilityas a spatialscale and magnitudetoo _;
small to be meaningfulfor analysispurposes. This fractionof the infor-
mation contentof the data is effectivelyuselessand could be discarded
withoutharm. Of course,there is no clear line dividinggood from bad
data, so this divisionis a subjectiveone. However,it is likelythat the 1
highestorder principalcomponents,i.e.,4 for MSS and 5 and 6 for TM, are ]
not physicallysignificant.This subjectdeservesfurtherattention. The i
commonlyheard expression,"oneman's signalis anotherman's noise"is
pertinenthere, but this statementdoes not have unlimitedapplicability.
It is alreadyknown that some of the Landsat4 imagesare marredby i
measurablenoise in the data. A I or 2 bit variationdue to instrument
noise effectivelyreducesthe informationcontentof the data by this
an_unt,if one considersapplicationsby the user community. ,

In view of these factorsone may say that for the northeastArkansasscene
the MSS acquiresabout10 bits of informationper pixel,the TM about 20.

IV. DISCUSSION i

The resultsare more encouragingthan expected. Generallythe MSS has i
adequatespatialresolutionto resolvemost fields in this representative i
agriculturalarea. To the extentthat this is true the TM would provide 1
only a modest improvementin informationcontentcomparedto MSS because
the main effectwould be to decreaseborder pixelsor mixed pixels as a
fractionof the total area of the scene. Evidentlythis effect is quite
substantial.

A secondsomewhatsurprisingobservationis the fact that the new channels,
TM 5 and L6, have greatervaluesof H than the visiblebands. This is
surprisingonly in the sense that data in these spectralintervalshas not
previouslybeen generallyavailable. However,there is no a priorireason
$:oexpectthe middle infraredvariabilityto be so large. These new
channelsprovidenot just a marginal improvement,but a substartialgain
in information.

I
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The implicationsof thiswork may be statedbroadly,but furtheranalysis
, must be carriedout. CertainlyIt is reasonableto expect several
i possibilities.
I

a. The compressionof TM and MSS data (e.g.,more imageryper physical
tape) by a factorof at leasttwo.

b. Specificationof observinginstrumentswhich acquiresubstantially
i the same informationwith fewer spectralchannels(e.g.,2 channelsin the

visibleas opposedto 3 or 4.

Evidentlycontinuedstudy of additionaldata sets is desirable;the general '_
_' outlookis promising.
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INTRODUCTION

The EROS Data Center's mission includes Integrating satellite and aircraft i

remote sensing technology into the operational programs of the resource
management agencies wlthin the Department of Interior. In pursuit of this

mission, scientists at the EROS Data Center (EDC) have begun to evaluate i
newly acquired Landsat 4 Thematic Mapper (_) data for their po_ential utility
in Earth science and land mapping applications. The overall objective is to
compare the value of TM data to Multispectral Scanner (MSS) and other types of
remotely sensed data, for pzoviding information that can help to meet
Department of Interior resource information needs.

This paper summarizes the early results of studies using data from the first
available Landsat 4 TM scene of Washington, D.C., which was acquired

November 2, 1982 (Scene ID 4019-15140). These results were reported at the

Landss_ 4 Early Results Symposium at Goddard Space Flight Center on
February 22 to 24, 1983.

The results are organized into four sections. The first presents some of the
characteristics of TMdlgltal data that were observed for five broad classes

of land cover. Some comparisons are drawn between coincident Landsat 4 TM and

MSS data. The second section presents an evaluation of TM spectral data as
slngle-band, black-and-whlte images, and in several three-band

color-composlte images. The remaining two sections describe demonstrations

of TM data transformations which can be used to present the data in a manner

that is potentially more useful for analysis or display. These

transformations enable generating (a) hue, intensity, and saturation data i
space from red, green, and blue color space, and (b) perspective view images.
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CHARACTERISTICS OF THEMATIC MAPPER DIGITAL DATA

The TM digital data wore avaluat_d for their potential to provide improved
land cover information, The analyse, included (a) testing for information
that may be offered by the now TM spectral bands and (b) comparing data
charaeterltlcs for equlvalent spectral bands of the TM and MSS sensors. The

analyses were conducted on several large samples of plxels corresponding to
five broad land cover classes.

Methods

The TM digital data characteristics were evaluated for a portion of the i

Washington, D.C. scene that included the vicinity of Dulles Airport, the
Potomac River, and the central District of Columbia. This subscene was

approximately I000 lines north-south by 3,000 pixels east-west. The !
coincident MSS subscene was spatially registered to the TM subscene to allow

analysis of pixels for common ground areas, The TM data were resampled to I

25- by 25-meter plxel size via cubic convolution, and registered to a I

Universal Transverse Mercator (UTN) map projection. The MSS data were
resampled to 50- by 50-meter plxel size via cubic convolution. Following

an appropriate shift of the MSS data relative to the TMdata, the 50- by II
50-meter MSS pixels were then replicated to produce four 25- by 25-meter
pixels in place of each larger pixel. This replication of MSS plxels created i

an expanded data set of equal dimensions with and registered to the l_data.
]

The TM and MSS digital data were analyzed for five broad classes of land
cover, Pixels were selected to include a wide variation of conditions within

each class so that spectral band relationships could be observed in response

to variations in fundamental land cover properties. The five land cover I_
classes (and the associated fundamental properties) were:

a. Forest (species and density), _
b. tlerbaceous vegetation (species and percent cover),

c. Bare soils (brightness),

d. Impervious surfaces (brightness), and
e. Water (turbidity).

Pixels in the TM sub_, ne _re grouped into land cover classes by

level-sllclng one (or more) spectral band(s). This paralleleplped method of

classification was repeated several times to create a separate image for each i

land cover class. Each image was then spatially edited to remove the boundary I

i plxels of clusters as well as individually occurring plxels. Images of land
cover classes which contained large proportions of the original scene (i.e.,

i the forest and herbaceous classes) were sampled to reduce the number of plxels
.: to approximately 20,000. Finally, the images created for TMdata were used to

i mask equivalent locations of pixels in the MSS data.

4

7
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Results

1. Information potential of the TM spectral bands.

Information content of a spectral band may be directly related to the
range of data velues recorded for a scene. The presumption here is Chat
a large range of data values will occur In spectral bands which are
particularly responsive to variations in land cover. If there are no
bmtd-dependent sources of noise within a sensor system, the range of data

1 values (and related statistical parametezs, i.e., variauee) may provide a
straightforward measure of information content that is readily comparable
among several spectral bands.

The relative variabilities of data values in individual TM spectral bands
for each land cover class are compared in Table I. The coefficlent, of

Table I

RELATIVE VARIABILITY IN DATA VALUES ASSOCIATED WITH _M SPECTRAL BANDS

Numbers in table are coefficients of variation (CV)*. Superscripts denote
ranking of bands for each land covez class according to magnitude of CV.

Band Band Band Band Band Band Band il
Land Cove: Class I 2 3 4 5 6 7 ii

Forest .036 .045 .083 .084 .172 .017 .211 ]

Herbaceous .046 .065 .094 .132 .123 .017 .161
Vegetation

Bare Soils .093 .152 .221 .221 .221 .024 .221

Impervxous .224 .292 .321 .292 .283 .025 .321
Surfaces

Water .036 .065 .084 .133 .501 .036 .482

*where CV = standard deviation/mean.

variation (CV) in the table normalize for the differences in meau data
values between bands. The large CVs noted for bands 5 and 7 _n all land
cover classes may provide evidence for the value of these mid-IR bands°
The CVs for these two bands are generally similar to the CVs of other
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; , handn (a•g., 2, 3, and 4) for nonvagatatad land areas (barn ,_o:l_la and
i impervloun clanaes). Hnwaver, the: EVa for at leant one of tlmaa two bands

- are larger than tileCV, of all oth_r hands for th(_ two veget:_ted ].and

L :_: cover clann.a and water. Thin augments that the mid-.IR ban(D_ provldo an
: improved eapabillty to detect variable condltlana within vagatatad land

i areas and wat,_r areas. _11eblue band (band 1) has n CV .mall or than all

3 other reflective ,peetral b,mdn (band. 1_,5,and 7). The l:|lel:inalImnd

_ U (band 6) exhibits a very smell. CV in all bands for fall land cavt_r claa;ic,n.

i : Correlations among the TM spectral bands can l)rovlde Int_Ight In_o
•- Information potential. C_nerally, high correlation, betwt_en two bantlt_
, imply redundancy of information, while low correlatlona :l.ndicat_, that

'" different information is present in each band. 11xe correlations among
._ _,[" the vislblQ and reflective-IR bands of TM data for all laud cover classes

17
Table 2

": CORRELATIONS* AMONG VISIBLE AND REFLECTIVE-IR BANDS IN 'ZM DATA

' i,_7 Forest Herbaceous Bare soils Impervious Water

•" (20,000 vegetation (33,000 surfaces (15,000

ii:"_ pixels) (20,000 pixels) (5,000 plxels)

<T" Spectral bands plxels) pfxels)
.7 Visible bands

g,f

S"- 2 with 3 .28 .62 .97 .96 .72
! _; I with 3 .31 •65 .95 .91 .51
F :_
_ :,_; I with 2 .38 .66 .95 .95 .50
: :A,,

i "

! _ Reflectlve-IR bands

i;:i_i- 4 with 5 -. II •15 •87 .81 .44

.,,: 4 with 7 -.18 -.14 .82 .80 .40
_:: 5 with 7 .89 .83 .93 .95 .69

_" Reflective-IR with visible bands
o

.,.. 4 with I .08 -.03 .88 .84 .23

4 with 2 .25 .25 .91 .91 .25! 0

! ,._- 4 with 3 .05 -.26 .92 .97 •36
! :_,',' 5 with I .34 .31 .85 .57 .II

,,_ 5 with 2 .28 .41 87 .69 14,_. •

"_.' 5 with 3 .74 .48 .8g .78 .21
! ' 7 with I .39 .44 .87 .58 .14

i. : 7 with 2 .33 .44 .88 .70 .13

c.":7"- 7 with 3 .65 .65 .90 .78 .20
, ,,

• All correlations significant at the 99-percent level of confidence•

. are provided in Table 2. The following ,'.servations are noted:
! .....

?
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" a. Visible bands have low to moderate correlations for vegetated land
' areas (forest and herbaceous vegetation classes). The low

correlations for the forest theme are probably the result of greater
variations in color for the tree crown foliage which was in the midst

t of fall color change.
f

b, Visible bsnd_ are highly correlated for nonvege_ated land areas,

probably b_cause the major variation w_,thin these areas appoar_ to be
brightness. Dramatic color 'variations are not evident.

c. Correlations among vieibte bands for water areas suggest a particular
advantage for using the blue band (band 1), because of its lower
eor_elation u_th both the green band (band 2) and red band (band 3).

d. _d-IR bands (5 and 7) have generally low correlations with the
visible and near-IK bands (1 through 4) for vegetated areas end water
areas.

e. Mtd-IR bands (5 and 7) have generally high correlations w_th the
visible and _ear-IR bands (1 through 4) for bare soils areas and
moderate correlations for impervious surfaces.

f. Mtd-IR bands (5 and 7) are most highly correlated with each!

other for nonvegetated land areas. High correlations also occur for
vegetated land areas. A moderate correlation occurs for water areas.

The correlations in Table 2 do not enable statements about combinations

of spectral bands which optimize information for particular land cover
classes. Furthermore, the correlations observed are scene-specific and
thus possibly not illustrative of more general considerations that have
influenced spectral band selection for the Thematic Mapper. Nevertheless,
the correlations noted here indicate that:

a. There are situations in which the mid-IR bands (5 and 7) may
provide a greeter amount of new and different i_ormatiou for
vegetated land a_eas than for nonvegetated laud areas.

b. Information contained in the two mid-IR bands (5 and 7) may be
largely redundant for some applications.

c. The blue band (band 1) may be more useful for certain applications
involving water and vegetated laud areas than for nonvegetated areas.

Principal components analyses were conducted to evaluate the differences
in dimensionality exhibited by TM and MSS data and to assess the
contributions to total variance that are offered by the additional TM
spectral bands (Ref. 1). Principal components were computed for a single
image file from each of the TM and MSS data sets that contained a sample
of pixels from all five land cover classes. (The analysis of the TM data

treated the six r_flective spectral bands only.)
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Th_ pri,cipal components computed for each data aa_ are presented in iTable 3. The traneformod MA_ data appear to bt_ principally

Tab.l.a 3

PRINCIPAL COHPONENTS(PC) FOR.TRAN,qFORHF,D HflS AND TH DATA.qEq.'fl

MSfiaa_a

I .203 .452 -.294 .818

2 ,212 .810 .421 -.348

3 ,768 ..-,07l -,535 -.344

4 .569 -,367 ,671 .303 Ii

TM Data

,,, Pcx Fc2 Pc3 ec4 _cs ec6
Spectral band (73,4)fl(18.8) _6,4) (0.7) (0.5) (0,2__)

I .262 .195 .608 ,411 .534 .264

-. 2 ,199 ,070 ,342 -,042 -,028 -.914

3 .278 ,287 ,395 -,045 -.784 ,257 i

- 4 ,398 -,871 ,205 -,170 -,031 ,105

5 ,728 ,122 -.561 ,370 -,020 -,058

7 ,355 ,317 -,030 -,813 ,312 ,118

Percent of total variance accounted for by each component.

: two-dlmensioual because 97,0 percent of the total variance is included In
the first two components. This has been a commonly observed
char_cteristtc of most MS8 data, .However, the transformed slx-baud TM
data show the potential for providing a significant third dimension of
information that, in combination with the first aud second componento,
accounts for 98.6 percent of the total variance,
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, I

The first two components in the _ranaformed Heft data have eoeffie.iant_

that are mora or le_ characteristic of many agrlo_ul_ural scenes, Thaaa
t_ dimensions are frequently referred to as "brightness" and "greenness"

'_ (Ref. 2), The first two components in _ha _ranaformad TH data have
" ' coefficients al_o suggestive of brightness and greenness, _oaffiel.e_lta
.*' for the flr_t component (PCl) are all paultive, auggu_ting an overall

brightness contribution by all of the original spectra! handn, _la
:: second component (PP_2) ahow_ the naar-IR hand (band 4) contrasted with the
-" vt.aibl_ bands, much aa occurs far the Nacond component in the tlfi.q data,

' The t.tlt.rd component (PC3) of fills 'I_t dataj accounting for 6,4 pnreent of

L. thee _ot{ll d{tta variane.e_ shown th_t; band_ 5 and 7 _ontrasg with al, l
other bands, Thl, suggests that I_ew and different Infer.marion is present
in the T_ rt_flective spectral bands to an extant that may contribute

,, sign_.f_can_l.y to the overall varlab._.lity of the scene,

2. Data characteristics for equivalent spectral bands o_ _he IM and M_8
: sensors,

The preparation of a spatially registered digital data set containing
j. coincident TH and MSS data allowed compariso_ of data characteristics over
•' ,_ommm_ground areas for equivalent 't_! and MSS spectral bands o For

_xample, probability density ellipses for the ,68 level of probability
'. around the mean value of each land cover class in TH attd MSS data
" respectively, are shown in Figs, I and 2. The figures enable comparing
-_ the separation between the mean values of the land cove_ classes and the

,.: variance within classes for the equivalent pair of spectral bands ia e_ch
:" data set.-',.f

i;. The separation bet_,_en means is greater in both the red and near-IR bands
- = of the _q data (F_.g. 1) than in the comparable MSS bands (Fig. 2).

_" Although not shown here, _he separation is also greater for th_ green band
_: of TH data than for the green MSS band. Variances within moat lau_ cover
,_: classes are also greater in the T_ data (water is an exception). However,

when compared on a relative basis, the variations in data values for many
e_f the classes in _ data are less than those in equivalent spectral bands
in MSS data. Table 4 compares coefficients of variation for equivalent

_" spectral bands by land cover class. (The CVs c_n be used to compare among
: bands and sensors to determine which contain the greatest relative
i_; variation.) Most (12 out of 15) CVB for the TM spectral bands are less

than or equal to the CVa for equivalent MS$ spectral bands.

_-_"_ The combination of greater mean separation , _ generally lower relative
variations in data values suggests an imprc _d capability for
multtspectral discrimination of land cover classes in T_ bands 2, 3, and 4

?

over the equivalent HSS baud_. However, due to the presence of an
- artifact noted in the MSS data, _he results noted above may be llmlted to
,- the MSS data of Landsat 4 only, and thus not be representative of HSS data
,: in general. The artifact occurred as a patter, of systematic banding

oriented diagonally (from northeast to southwest) across the image, To
,.. quantify the caverity of the banding, we computed a coefficient of

-/
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: i FiB. 2 One standard deviation, covarianee ellipses for land cover classes in
' , coincident NSS data.
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TM',It_ 4

RELATIVE VARIABILITY IN DATA VALUE,q FOR EQUIVALENT SPECTRAL BANDS
OF THE ag[ AND MSS SI'_NSORS

N.mh_rs In table arc e.oi-,ffletnnt of variation (CV) for piKe.Is of common
" ground area in both data as.is.

Sensor and [terbaceous Bare Impervious

t3.i!ecir_£1regio.n fot;_:si vegetation SOtie _m'faces Water l_
I

MSS green .08 .08 .17 .25 • 10
(band 1) :

TM green • 04* •06' • 15_ •29 •06"

(ban_ 2) _ _
t_
'i

MSS red .12 .13 .26 .32 .18 _i
(band 2) i_

TM red •08* • 09* • 22* .32* • 08*
(band 3)

MSS near-IR .10 .12 .24 .28 ,95 d
(band 4)

TM near-IR .08" • 13 .22* .29 • 13"

(band 4)

• TH (CV) < HSS (CV)
where CV'-= standard devia_ion/mean.

variation for an area of water common to both data sets. Water was i

selected as a region having low relatively homogeneous reflectance where

the effect of the banding would be most pronounced. Our results showed

the CVs for water in the MSS data to be three to five times greater than

the CVs for equivalent spectral bands in the TM data, This observation
explains the much greater size for the ellipse for water in HaS data

(Flg. 2) than in TM data (Fig. I).

TM IMAGE INTERPRETATION TESTS

Because seven different black-and-whlte images can be generated from TM data,
the question arises as to whlch single-band image is best suited (from the

visual interpretation standpoint) for a particular application, Similarly,
what combination of three TM bands would likely produce the most interpretable

color-composite image? To gain insight into the answers to these questions, a
test was designed to evaluate the relative interpretability of TM cpectral
bands as single-band, black-and-white images, and in several three-band

combinations as color-composlte images.
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_thode

Black-and-whi_e images of the six reflecclve THbands t and six three-band
color-composite images were prepared from digitally-enhanced data. Digital
enhancements included contrast-stretching the digital data values to fill the
entire dynamic range and spatial filtering to increase edge definition. The
six color-composite images were:

1 a. A simulated natural-color image (bands 1, 2, and 3 printed as blue,
green, and red, respectively),

b. Two simulated color-infrared images (bands 2, 3, 4 and 1, 3, 4), _

c. Tw_ images using each of bands 5 and 7 In combination with bands 3 and
4, (bands 5, 3, 4 and 7, 3, 4), and

d. An image using the same three bands as the 5, 3, 4 composite listed

above but with the sequence of compositiug (printing) changed tu 3,

5, 4. ii
Eleven different commonly encountered interpretation categories were defined _:
for interpretation on all images. Examples of each category were located
throughout the entire image area of the Washington, D.C., TM scene. For each _
example, a set of image chips was cut out of the six individual
black-and-white images and the six color-composite images. The chips,
approximately one inch in diameter, were cut from l:94,000-scale paper prints
of the images. Each chip within the set showed the same area on the ground.
Each set, in turn, showed features and conditions pertaining to a particular
example of an interpretation category.

A total of 420 image chips within 11 categories were submitted to three
interpreters for evaluation. The interpreters were asked to rank the
black-and-white chips within each set on a scale of 1 to 6 and similarly for
the six color composite images. A ranking of I was to indicate most

interpretable (or best) for that particular interpretation category.

Results

The average scores of interpreter preferences for images in all categories are
shown in Tables 5 and 6. Because the selection of a best or most

interpretable image is likely dependent on the subject of interpretation, _he
results are presented by category.

Rankings of interpretability for the individual bands (Table 5) suggest that
images of the mid-IR bands (5 and 7) may be very useful for supplying
information in many of the interpretation categories. One of these two bands
was ranked first in 8 of 11 ca_egories that included both vegetated and
nonvegetated scene areas. Interpreters had generally low preferv_.es for
images of the blue band (band 1) in most categories.
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Table 5

AVERAGE SCORES _/ FOR INTERPRETABILITY OF INDIVIDUAL TM BAND BLACK-AND-WHITE
IMAGES

Superscripts denote ranking of bands for each
category from highest (I.0) to lowest.

Band number

Interpretation category _I I 2 3 4 5 7

Natural vegetation 5.66 5.25 3.13 3.84. I.I I 2.3 2
dlfferentlation (5) -

Forest drainage 6.06 5.05 3.84 1.72 1,31 3.23
pattern recognition (3)

Among fields 5.76 4.3 5 3.64 1.81 3.33 2.32 F
i

vegetation variation (3)

Within field 5.7 5 4.24 4.24 3.83 _.02 1.81

vegetation variation (2)

Soil/vegetatlon 5,0 5 4.0 4 2.7 3 6.06 2.32 1.01
differentiation (I)

Among fields soils 2.72 4.7 4 4.0 3 6.0 5 1.01 2.7 2
variation (1)

Within field soils 3.74 2.91 3.12 3.8 5 4.0 6 3.6 3

variation (3)

Residential details (3) 3.34 4.0 5 5.96 2_9 2 3.13 1.81 .....

Business core details (3) 5.16 4.65 3.44 2.93 2.82 2.21

Water/vegetatlon 6.06 4.85 4.24 2.22 1.61 2.3 3
differentiation (4)

Water turbidity 3.84 2.12 I.II 3.73 5.25 5.16
variation (3)

_/Average of three interpreters' ranking of the number of examples indicated.

2--/Number in parentheses indicates number of examples interpreted.
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Table 6

AVERAGE SCORES _I/FOR IYrERPRETABILITY OF TM COLOR COMPOSITE IMAGES

Superscripts denote ranking of composites for each

category from highest (1.0) to lowest,

ti 3/Band combina on-

Interpretation category2/ 123 134 234 534 734 354

Natural vegetation 5.86 4.25 3.12 3.33 3.64 i.ii h,i
dlfferentla_ion (6)

Forest drainage 5.86 2.22 1.71 4.85 2.63 4.04

pattern recognition (3)

i- Among fields 6.06 3.85 2.62 3.64 3.43 1.71 I
vegetation variation (3) _:

!_ Within field 6.06 3.55 3.23 3.34 2.31 2.72

• vegetation variation (3) ,_

Soil/vegetation 4"04 4"75 2"82 3"53 3"53 2"51 ii

dlfferer_tlation (2)

Among fields soils 5"05 3"03 2"01 3"74 5"05 2"32 !i
variation (2)

Within field soils 1.71 3.73 2.82 5.35 4.04 3.73 Ii

variation (3)

Residential details (3) 3.01 3.32 3.01 3.32 4.03 5.34

Business core details (3) 2.02 3.73 1.31 4.04 4.04 6*05

Water/vegetatlon 6.06 3.84 4.05 3.33 2.42 1.41
differentiation (4)

Water turbidity 1.21 2.72 3.03 4.75 3.64 5.96
variation (3)

_/Average of three interpreters' ranking of the number of examples indicated.

2--/Numberin parentheses indicates number of examples interpreted,

_/AII composites pointed with blue-green-red filters in the order of bands
show1.
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Ranklngs of interpretability for the three-band color composites (Table 6)
showed generally high interpreter preferences for the simulated color-lnfrared
composite (bands 2, 3, aud 4) lu many interpretation categories. This color
composite was ranked first or _econd in 8 of II categories. For many
categories, interpreter preferences were lower for the color composite
consisting of bands I, 3, and 4. These results suggest that replacement of
the green band (band 2) in a color-lnfrared composite with the blue band (band
I) may reduce the interpretability of the resulting composite for many

:" I applications.

Of three color-composlte images containing a band from each of the visible,
near-IR, and mid-IR spectral regions, the band combination of 3, 5, and 4

showed highest _nterpreter preferences in 6 of 11 categories. This particular _ibaud combination was ranked first over all other combinations in four

categories, suggesting the utility of having a band from each of these three '!
spectral regions in a color composite for several applications. However, the ]
varyiug degrees of interpreter preference evident in Table 6 for the color I

i composite images of bands 3, 5, 4, bands 7, 3, 4, and bands 5, 3, 4 show that I
the colors assigned to each band in the composltlng process may have a

: significant effect on image interpretability.
i

_" The natural-color composite image (bands I, 2, and 3) ranked generally high in
i:_ interpreter preference for categories involving distinctions among

i:_ nonvegetated areas. This type of color composite may have its greatestpotentlal utility for applications where color variations in water, soils, and

.... inner urban areas are of interest.

HUE, INTENSITY, SATURATION TRANSFORMATION

_: Methods ,i

i: 1
Color raster images are typically displayed by varying the intensities of _1

'_ three primary colors (red, green, blue) at each pixel location. This
;_ approach is simple to Implement using computer hardware and is similar to
.-. processes used in other image display schemes such as photography or
"_ printing. While it is true that color-sensitive eeceptors in the human eye

are most responsive to light centered about t_.e red, green, and blue (RGB)
wavelengths, the responses of the eye/brai_ system to light can best be
described by the perceptual variables--hue, iu_ensity, and saturation (HIS)

: (_f. 3).

A procedure to create and manipulate color i_es in these dimensions has been
!, implemented at the EROS Data Center. The procedure consists of transforming
- an image from the red, green, and blu_ domain to hue, intensity, and

i_ saturation space, manipulating the HIS image, and then performing an inverse
:_ transformation back to a red, green, and blue image.

The transform procedure examines the red, green, and blue values of a pixel
in a three-band i_tput image and determines hue, intensity, and saturation
values for that ptxel. Each pixel in the input image is transformed,
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i:

resulting in a three-channel data set with the channels representing hue, i
intensity, and saturation which can then be manipulated in HIS color space.
This also affords the opportunity to merge other information with the

original three bands. (The operative assumption is that the information
contained in the ROB bands is distributed throughout the HIS channels. It
is, therefore, possible to replace one of the HIS channels with another data
set and not lose one-thlrd of the information content of the original image.) _'

Results

The result of replacing the intensity channel of the HIS transform of TM bands

2, 3, and 4 with band 7 and then retransforming to the red, green, blue _
domain is presented in Fig. 3. This particular rendition appears to
facilitate the visual perception of roads and streets in urban areas. The

substitution of each of the bands 1, 5, and 6 in turn shows promise for
enhancing other features. Evaluation of these other transformations is not

yet completed.
'i

Fig. 3 TM color composite image of Washington, D.C., November 2, 1982.
The image is derived from a transformation of spectral bands 2, 3,
and 4 into hue, intensity, and saturation data space. The
intensity dimension has been replaced by spectral band 7.
(Original figure in color.)

,jHIUI_WAL PALit; _
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PERSPECTIVE VI£W TRANSFORMATION ORl(_xlhL _[_ _
OE POOR Q_ /'A/'i'Y

t

Methods
'i

A perspective projection creates the illusion of depth in a two-dimensional
image; distant objects appear smaller than near objects of the same size. The
result is a natural-looking image, similar to an oblique photograph. One of
the products of research into flight simulators and robotic vision is an

•I economical method for calculatlng and displaying perspective images of digital
terrain data.

The EROS Data ten _ has recently implemented a capability to create _i

perspective images by registering digital elevation data and pixel positions. ,i
Tt is depicted here with spatially registered IMdata and Digital Elevation

Model (DEM) data of the Washington, D.C., area. The user can specify an z, y :.
location in the input scene, a height above the terrain, the look angle, and a

fleld of view that can vary between wide and narrow angle (Ref. 4 and 5). i

_sults

A perspective view image of central Washington, D.C. appears in Fig. 4.
Bands 2, 3 and 4 of THdata have been draped over the digital elevation data.

Fig. 4 Composite perspective image of Washington, D.C.,
November 2, 1982. The image shows TM spectral bands
2, 3, and 4 spatially registered to DE, data.
(Original figure in color).
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; SUMMARYOF RESULTS

I Some early results of evaluating newly available TM data for providing

improved land cover information have been obtained. These results were
derived from coincident TM and MSS data of the Washington, D•C., area that

were acquired by Landsat 4 on November 2, 1982. The limited extent of the
analyses performed to date are summarized as follows:

In general, the results of digital data analyses suggest the potential for EM

data to provide improved land cover information due to the addition of data
channels in new spectral regions. The mld-IR bands (5 and/or 7) may be

especially useful because of (a) the large range of variability for digital
values in five broad land cover classes, and (b) low correlations with other '

spectral bands for vegetated land cover classes and water area_• The mid-IR _
bands may also play a role in providing a significant third dimension to data

space that has been transformed into its principal components• Low
correlations between the blue band (band I) and other spectral bands suggest

i its utility for applications involving water and vegetated land arias. 51

The separability among the mean data values of several land cover classes was _

shown to be greater for TM spectral bands 2, 3, and 4 than for the equivalent

MSS bands I, 2, and 4. In addition, the relative variabilities in data
_- values associated with the classes were more often lower for the TMbands than

for the corresponding MSS bands. These observations could indicate a
contribution to better multispectral discrimination of land cover classes by !i

TM bands 2, 3, and 4 However, an artifact in the MSS data noted herein may ii
have contributed substantially to the greater relative variabilities observed _'

i: in the MSS spectral bands. :
0:

The large variabilities noted for the digital values in the mld-IR bands
(5 and 7) likely contributed to the results of interpreting black-and-whlte :

• images of the six reflective TMbands. Interpreters indicated a preference
for images of bands 5 and/or 7 over other bands for making distinctions in 8
out of II of the interpretation categories that were addressed. Results of

interpreting six color-composite images showed highest interpreter preferences
for a standard color-lnfrared composite (bands 2, 3, and 4) or a color

composite consisting of bands 3, 5, and 4 in 8 out of II categories. A
natural-color composite image (bands I, 2, and 3) showed high interpreter

preferences for three interpretation categories involving distinctions within

predominantly nonvegetated areas•

Finally, two types of data transformations were demonstrated• A
transformation fro_ red, green, and blue color space into hue, intensity, and
saturation space has the potential for offering enhanced interpretability for
TM color-composite images. A perspective view transformation could be useful
for presenting registered layers of spatial data in an obllque-view format•

-" IV-296

_W

O0000004-TSB08



REFERENCES

I. 6.K. Jen_on and F.A. Waltz, "Principal Componeni,_ haalysin and Canonical

balalysls in Remote ,q_nslng," pr_#ceedlngs Of Amer)Ic_n_S°_c_:_'_t!Pf
Photogramme try 45th An_nu_a!_Mo_t)In_,Vo]. 1, 1979, pp. 3T/-348

2. R.J. Fclnth and G.S, Thomas, "The Ta.ell.ed Cap -.- A Graphic l_serip=ion of
the Spectral-Temporal Development of At;riru]t_,:'al Crops a,_ Seen by

S_ymposztum_, l_boratory for Applications of _mote Sensing, Purdue
University, West l_Ifayette, Ind:l;_na,,ht,e 29-July I, 1976, pp. 4B-41 to

4B-51 I
li

3. $1GGRAPH-ACM, "Status Report of the Graphics Standards Planning 'i
Committee," Computer Graphics, Vol. 13, No. 3, 1979, pp. 1116 to lll-ll

i
i

4. T.M. Strat, "Shaded Perspective Images of Terrain," M.I.T.-A.I. Memo 463,

MIT Artificial Intelligence Laboratory, Cambridge, MassachusettR, 1978 !I
,, oo ii

5. B. Schachter and B. Flshman, Computer Display of Height Fields, General _i
Electric Tech. Pub., Daytona Beach, Florida, 1979 i

!

1

,i

;i

i
i,

!

IV-297

O0000004-TSB09



THEMATICMAPPERDATAQUALITYANDPERFORMANCE
ASSESSMENTIN RENEWABLE

RESOURCES/AGRICULTURE�REMOTESENSING

,I

R. M. Btzze11
and H. L. Prior

_,ii NASA/JohnsonSpace Center
!

k
I

_I)IN(; PAGE BLANK NQ,T F'tt2M_D

'. _' Iv-2g9!.
h

O0000004-TS B11



r

I
INI IIODlli:Ifun

Thg_ liilll.:h;Jf I:illd!;II.-1 c_ll,I_l,,,'?._,t1'r//. l)i_,vld,.liillc,wi,_,l'i.,_I Iv,, I_,l mimi:.

vli,w ,,i II., li. fill IIi,_,l,,,,r,_,,,m_-iliI_i II', "_lliIIIc.I",,illI,i_,. ,HI_IIIi_II ir,,_,liII_td

hnvll I)(lltll !,tll _',i',_,llll ly I_r i,,._,',',ltift Illi_ I_,l_,m_,l_,l _,ll ,,l!t_,ll,, ,IIHI _,:,'1t ,1{ t ;llll lllflll ,.

lllirlloll i:lHIll illlllflgll_,{;ll,ll ,,lilltlilll!. (M_;_;) i_l.,,H{I I1,_ Illt_t_ I,ill{l',_ll i_l_ll'l'l,llil_,.
Thrill filli,'l:(H,_, lhlfi i,I'{li{'ll)(l lilll ll'lili!,ffq ,,f l,,illllni i _lil.,ill,,ll _| lllll M!;!; iillfI

;-i',!.¢-,,l_ll(,il lli'llUmiilI{,ll i);';ll ,.'ll_lll l,.,lili(,l"!ly Ill l.,lll lli,' l,ld,l If ,Hi,l III,_ l'i lwili_

_;{_("l(il. Wll'll lli_i l,lui.;h _,f 'II._ I nll(l,,_.rl'o-.l} ,,lil__l I II_, ,.i ,lilly i_. 'l'i_{;': _i li_,w
(hi_ll,,li!-l_i w,_!, l'l_',_mli,_l In lllr_!,li l_,(:lil.' _,_II',I',. lli ,i_hllll{,li l_i lli_ li,Hlll,lr {,

M_;_;i, i.l llllW ,,lill,,i_l (lli,,m,_l I_: Mril)l.il) w_', II. lild, Hl lli.il lll,,il I.,i ,ll_II '.l,Jlill l,:_'llll

Iflllll'_,V(lllllllrl'f,i Ill Ill_l t lHIIullll.rll II. nlHI ijll(i llltll_: _ll;l>,,:l,, _t Ill(. lillilllfil,_(:ll ill
(lllll!il (,l!$!J) wli,illl I {,l,_'ii _;ll :illll (h>v,_ll,tllii(!lll'tl_il_ii. AI I'hlt ,hllili!,_ui !ill ll:l " '

(Rol'. 1)_)f *l(Jc:lili<_l,,!ly t()tllhJl_)!,s l;l!lnlll_:uiil I,.,!ili,,_, lii Ili,_ lll,..l_l lJ,,i_.ill_iii cif

il;lliiul'oly :iui ,_l(t d_i'li.i l_l !ll,_liiil (.f_.ip Illvltill,)l y li,l:, IH,_ll ,i ii, ]l_ I;if,l(_, Ilio
rocolp'l" (_f tilt-( IM {lli'li-i 'if)il_;!_l.,,,,.. 1t"., ill II l'ly I:ul ':,(,Ivliig (111 I,.,,I ttl_._.lil(:_lil_i of _t.,_

_: th I iJ _{,.;lil(tllo{ly hi.ilk I)l i(lll itll'lhllb lu!A'l c,-I I I y ,IWill 't o(I. il
L_

,Slglilflr,:dlrl _ cff(._ll will tl_-} ruqullod t{_) cJi-tlii illll],_l '.,lulldllly (,f llill lllilii(:)vc, d

"_ IllfUlmL4lIon ('uiil(-ql'l dtlo lu 'lht.._ lll(;ri-il],:,i;,d :ilJut.'ll;ll ,lllll l,l)<lll,iI iI,.llil <111(1_e,,llly

- Idontltlcilt lull crl' tliu IliaJt)l _ll'l'ui'l.<_, I,o., IIit..lt.iti:,lHI tit IIilli l lold vi.II l_-(lll Ilty
.. duo "t'O dtJtt}t;'l'IOli u4._ _.llljIl_lO vdrli:il'Ioll,3 Ill v,_tllrlit'll(.ql I:illl(_li)y ,ili_l -x_!_,ir Iilt__(I i

sol Is b_lckglound i_tlitJ/ol !,ol 15 i.-illd Ic, i:lf iliCil.<.*llll'O, !i

" i'lThls papcu" rl:lt)ll:l:,Olil-_, lliu llJ,.>lll'l,_. _)f b_tslcol ly qudlllui Iv, ll,w;_,l I cli_4 Ioli.5

de,:,Igil_d Io lluI t) ful mtl I,tt'(:_ tliu: .%l)Hl'l f Ic I _._._ii Lli i_iill ,h_w. I,_lUiil:ilrI I,iglc.<J -t(-)
• _" • pc,,%
_l.,s ...... 1-11_' IM lr, llict c:C)lil-te×'l o1: I_rg_._ i:(I,-,.t IUli_,w_il:,l(: l l_L,i,illt:tJ;> _CleliCP. obJP.o-
t Iv(-.s.

Upon receipt ,.)ithe llill'ul TM Imagery _i veiy oub,i(:_cllvu ovi,lllt@Ic, n was nlade of

the JSC, Imagmly l)roducl-... Io detect and report any degr_cl_rl l(.,ll whlch may l_eve
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:'- the areas evaluated (Fllg,I) from a vl._ual_tandpolnt. Str,_Ightllne_ appnnr
" as _tralght llnen, a_ evldencnd by _ectlon llne road_, alrport runway.% etc.
" Circular/oval features such a_ stadiums, drlve-ln theaterr_,oval race trackn
" In tileDetrolt _ceno all appeared nemlnalI

..... In ex_mlnlng the radlomntrlc characterl._tlc-nof TM, an an_lynl_ of the :,IF._nal
.: • to nol_e rMlo and Incrc,anadquantlz_tion In nac.h,,pnctr_lhand w_.mcond1_ctnd.
.'. Figure 2 show;_ es_entlally that the performance I_ an .qoed _r better th_n
:- i speclfled (whlch I_ Improved ovrPrl._nd:_atI, 2, 3 MSS). Thosr,rr,;_ult_are
:_, ba_ed on _naly_Is of approximately 35 w+d+er rind 20 vnget+_t'lon _lt_, from an
.,. August 22, 1982, TM _ceno over Ml_ourl _imdArkan:_,_ wh(;mo ureund ob._rvatlon5
:" were awllable. Thermal band re_ult,_ ,_r'e Inconclusive In thl_ I lmlted result'
._. because the homogeneity of _ho _olectod ._l'l'es cc)uld not be ascer'l'_Inod.

In examining the TM system spatial and goomotr Ic character 15tics, _overal
':_ studies were performed. In the Initial Image quality assessment, numerous
- small obJects of essentially known dlmenslons were measured to ascertain that
.... the spatial resolution meets or exceeds slightly the 30 meters specified In
:' all bands except the thermal whore r'esult_ were not obtulned (Figure _).

... SPATIAL RE._OLUTIONINVESTIGATIONS

: " Pre-Land._at 4 Thematic Mapper crop Inventory technology (MSS ba_ed has experl-
': anted an as-yet-to-be resolved effect from plxels that contain more than one

_ : category of Interest. Figure 4, a TM slmulator _cene from W_,bster County,
- Iowa, demonstrates this boundary/mlxed ptxel effect. Thl_ wa.'_due primarily
,:. to category boundaries and category Intermixing which was beyond the resolu-

i _::, tlon capability of the system. Thus, the Impact due to the Increased _patlal
_,., resolutlon of the TM Is a very Important factor rn potential ,_olutlonof the
i-S,; prob l era.

.I,. To evaluate the effect of the Improved spatial resolution we categorized an
agriculture area of the Detroit TM scene by notlng the types and relative

;.... content of boundary plxels utilizing a currently exlstlng fleld definition
:'- algorithm. Uslng an MSS scene for the same area, although not concurrent

dates_ a comparison was made of boundary plxel proportions In the 11_ and the
.... associated MSS scene.

; Results of this one scene comparison Indicate the TM scene boundary plxel
content Is approximately 37 percent of that found wlth the MSS scene. A
boundary plxel being one not readily Identifiable with any fleld or category,

: but tending to lie In a line falling between two fields or categories. Stated
" alternatively, the MSS scene has a boundary plxel content that Is 2.7 times
:-" greater than that of the TM scene. If these results are lndlcatlve of the

- range of TM scene types It will be a slgnlflcant step In easing the boundary/
;- mixed plxel effect. Where many scem:;s contain of es much as 50 percent mlxed

plxels this can offer a significant reduction In the cla._slflcatlon and subse-
; ;" quent proportion estlmatlon error.

The finer spatial resolution of TM gives Imagery whlch was found to be a suf-
ficient base, unlike MSS, for ground cover/land use ground observation collec-

'_ : tlon (Ref. 3) and annotatlon, (Figure 5). Replacing hlgh altitude alrcraft
photography for thls purpose whlch also required a registration step to Landsat

_:_:'"; for digital ground data Is not requlred wlth TM. Thl_ also clearly Implies TM
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_, Imagery _n be usQd In _¢r_tlflcation _f Innd Into agricultural or n_n-
agricultural In c_mmQdl¢y pr'oductlon f_r_caBting Bample fram_ dewl_pm_nt.

•:. Field _lze dletrlb_tlGn with TM Ima_er'y by cQ_ntry and crop raglan can at_Q h_
.; axpEted ¢o ha Improved _wr narllar M_S,-ba_d astlma'La_.

.,7 ,_L RESOLUT!ONSTUDIES

_' In ex_mlnln_ ¢h_ _|)octr_l ch_r_ct_rl_tlc_ Of TM_ _ prlt_clp_l coBp_n_rlt'_ (PC)
_naly_l_ w_ conducted u_lng data from the MIssissIppi Co,_ AR_ scone (August

._ 22, 1982), An example of the re_ul'f_ In flgure_ 6 _l'ld ? _how_l (1) th_t' TH

..:. bands 2_ ], end 4 provide dat_ corr'olatod '1'o the MSS b_nds but with gro_tor
dynamic rango_ and (2) that TM bands I, 5, 7, and 6 offer" potential for

'l'_'' Improved Identlflcatlon of land cover classes o_; can be soon In thu Informa-
-- tlon avallable In PC Image_ of the 4-6 component=, which I_ not available In

.: PC Images of the first 3 components (Figure 8), Further_ a= opposed to MSS
(with Its essentially 2 intrlnslc dlmenslons of greenness and brightness In

_,:[' the fixed linear transform space of Kauth-Thomas_ Tasseled Cap, when viewing
; vegeta_lon and .soils) the TM exhibits essentially 4 Intrinsic dimensions plus

-_. a potential flfth of thermal Information where the first two dlmension_ are
highly analogous to MSS greenness and brightness (R_f, 4). The scene detail

....... found In thermal Images Indicates the potential of _hls region even though the
!_.; data are not taken at the maximum of the dynam!c range or contrast, This
:!i.: larger dimenslonallty of the 114data structure with Its potential for more ac-

-/ cura_e Information carries wlth It the need to analyze this larger dimension-
s;.... allty to achieve the Information gain. Also_ this represents added Information
•:::" from a single TM acqulsltlon. An additional Increase In Informatlon content
._.;.: wlth multltemporal data Is expected to be evident.

_i.i I Although initial studies have been limited by time-since-launch, data quantityand quallty (malnly availability of adequate "ground truth" for quantitative
::_, assessment), the Indication of additional Informatlon for agricultural purposes
:_';" is encouraging. One such analytical evaluation (Ref. 5) of a sampled scene In
._ Mlsslsslppl Co., AR_ of August 22_ 1982, where field Inventory ground observa-
=_ ¢ions were collected by the USD_ revealed several significant results. Both
..- Landsat-4 MSS and TM data were acquired which allowed Insight Into the pofen-

-_;'" #lal Increase In informetlon content with the TM data. Separabl!lty measures
• • were calculated for several features (crops_ water_ trees_ soil) from the six
_ reflective bands. The results were consistent with other quantitative studies,

...=. I.e. principal component analysis, In that 95 percent of the average separa-
'; blllty between cell c(asses was satisfied _y using four bands for palrwlse
._' separation (one class vs. another) approxlmately the same separablllty was
_- achieved with three bands. Figure 9 Is an example of the "best" bands for
....' soybeans which made up 70 percent of the scene. Slgnlflcant observatlons from
_= the feature separability studies and associated classlflcatlon results are=
:._ (1) "best" three bands for separability of classes generally always come from
:: these three groups- visible (bands 1_ 2_ 3)_ Near IR (Band 4) and middle IR

(Bends 5 and 7), (Figure 10), (2) separability be'Pween classes was approximate-
: ly the same if one band from each group was used_ (_) If no mld-IR band was

._ used In ciosslflcatlon the overall performance was signlflcantly degraded

._. (Figure 11). These separability results are consistent wlth prlnclple compo-
.:_ nents analysis (Figure 12), In that the first component represents a

.,.._. "brightness" measure liken to the visible bands, the second componen_ Is
It II

greenness as Is band 4 (Near IR)_ and the third component represents the
_"_ variation In the brightness plane due to soils/soil moisture variability which
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takes advantage of the mld-IR bands (5 and 7), One clear me,sage from these
analyses Is that the TN mld-IR bands _Ignlflcantly contrlbutQ to the extrac-
tion of agricultural Information, I

!
The Increase In Information content due to the added _ spectral band_ over =
the MSS would_ howoverp be lessened ware It net for the Increase In the spa- =
tlal resolution (approximately $0 meters vs, 80 motors), Mere visual comparl-
son of the scenes (Figure 13) exhibits the obvious within field variability
(Information) captured by the _4j I,e,p Irrigation dltcho= In rice fleldsj
drainage patterns_ texturing from crop canopies and/or sotls, The "good news...
bad newstl aspect of this Is that the technology to derive large area estimates
of Some Important crops with MSS Is understood and_ Importantly_ In u_e within t_i
the USDA, However, the limits may have been reached, Similar understanding ,]
and associated Information extraction technolog_ to take advantage of the TM
will require extensive research and development resources,

SUMMARYANDCONCLUSIONS _i
i
!,

Analysis of the early TN data Indicate the TM sensor and associated ground _'
processing are performlng equal to the hlgh expectations and within advertised
speclflcatlons, The overall TM system wlth Improved resolution, together with
additional and more optlmumly placed spectral bands shows much promise for
benefits In future analysls actlvltles,

Simulations of TM dater uslng the Thematic Mapper Simulator (TMS) were col-
laborated by the early TM scenes, These simulations did an excellent Job of
simulating the TM_ and thereby providing meaningful pre-TM studies plus "
enabling adequate data systems and analyses technlques to be available to
support early evaluation of the TM.

By selectlng man-made features of known dimensions (e.g., hlghwaysw ¢!rflelds_
bulldlngsp and Isolated water bodles), an assessment was made of the TM perfor-
mance relative to the specified ]O-mater (ga-foot) resolutlon. Indications
are that this resolutlon was achleved or exceeded.

The Increase of spatial resolution of TM (30 m) over MSS (80 M) appears to be
slgnlflcant not only In resolving spectrally dlstlnct classes that were pre-
vlously undefinable (e,g.p roads, small fields) but also In dlstlngulshlng
wlthln-fleld varlablllty. This Increased spatial resolution, therefore_ de-
creases the effect of the mixed plxels on the boundaries and accurately repre-
sents varlatlons wlthln a field due to sollsp topography, plantlngp and densi-
ty. The TM produced Imagery was found to be sufficient base for ground cover/
lend use ground truth collection In most cases. If this TM Image can be
substltuted for the high altitude aerial photo base presently used, It could
provide a more timely and cost effective approach In the collection of the
ground data,

The addltlonal spectral bands, particularly those In the middle Infrared re-
gion have added a significant Improvement to the dlmenslonallty of the data,
Thls larger dlmenslonality of the TM data stt'ucture with Its potential for
more accurate Information carries with It the need to analyze this larger dl-
menslonallty to _chleve the Information galn, Earlier TNS studies and pre-
Ilmlnary TM analysis have shown thls represents added Information from a
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single TM acquisition. An additional Increase In Information content wlth
multltemporal data Is expected to be evident.

Four potentially useful compononts for crop separability were obtalned from
the TM spoctral bands. The first two principal components appear to be highly
analogou_ to th_ MSS groonness and brightness componentsp leadlng to the expec-
tation that the second two components will contaln other useful Information
when v(ewlng agricultural scenes.

An Important result of the early _M evaluatlon and pre-TM analyses was the
development of an Integrated system to recelve Landsat-4 TM (as well as MSS)
data and analyze the data via various approaches. Thls system provides a
capability for rapid manipulation of small volumes of TM data Including data
extractlonp digital data manlpulatlonp Image display, and film generatlon as
well as performing many sophlstlcated pattern recognition and Image analysis
functlons.

I
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Pigure 2. Observed S/N Noise Equivalent Temperature Difference
(NETD) by Pre-Fllght Speclfications

ANN ARBOR. MICHIGAN, #9648
SCALE 1:111,000

_SCALEOF ENLARGEMENT 1:30.0001

UNIVERSITY OF MICHIGAN
FOOTBALL STADIUM

1:24,000
BASEBALL FOOTBALL FIELD GOLF COURSE
DIAMONDS (W! X 120 METERS)

Pigu_e 3. Examplo of TM Spatial Resolution

IV-306

®
..................................... ..+.... _:. +,+.: ............ ..........

+-+'":+'_":++-'..... ":':.... :++"':'-"-':++-+".........'.........+-'..........-+ 00000004-TSC04



. IV-307

00000004-TSC05



'I!

,,+-,_,.+,_..,,,i+:'_ ,,

IV-308

®

"-"'"-+_"'+:'+--"_--'_+"-=-"'_+..............""" .......-+"-'"................................ 00000004-TS006I



117
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Figure 6. Regression Analysis: Prediction of New TM Bands from i'
MSS Equivalent
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Figure 7. Correlations of MSS and TM Bands
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Figure 8. Example of Additional Information Available with TM Based
on Principal Component Analysis

I
i

i
.i
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Figure 9. TSe Best Three-Band Combination for Crop Discrimination
Using A Single-Date (August 22, 1982) Missouri/Arkansas
TM Scene
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Figure 10. Example of Classification Using Linear Combination Iof TM Reflective Bands

_igure 11. Example of Improved Proportion Estimation R_ults
w_th Incorporation of TM mid-IR Eand_
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Figure 12. Example of Analysis Technology Developed to take Advantage '

of Thematic Mapper Dimensionality ._
i'

I

Figure 13. MSS and TM Data over Mississippi County, Arkansas, Site
Acquired by Landsat-4, August 22, 1982.

:_. IV-312

' "[._ _T-,.R_ _ •

i_a ....... ._ .......... '

.......................................................................................O0000-O04-Tsc i0



W85 -23 2 0 2

PRELIMINARYCOMPARISONSOF THE INFORMATIONCON%ENTAND UTILITY
OF TM VERSUSMSS DATA

Brian L, Markham
Earth ResourcesBranch

NASA/GSFC
Greenbelt,MD 20771

INTRODUCTION

The Landsat-4ThematicMapper (TM) instrumentis a secondgenerationelectro-
mechanicalscannerwith numerousupgradesover the familiarMSS's. Of
particularinterestto the user communitywere the improvedspatialresol_Jtion,
increasedradiometricsensitivity,refinedlocationsand widths of the green,
red and near-infraredspectralbands,and new spectralbanos in the blue, i
mid-infraredand thermal-infraredregions. Pre-launchsimulationstudies
indicatedthat [M data would providesignificantenhancementsover MSS data _
for variousapplications. _

Tileobjectiveof this studywas to providesome preliminaryindicationsas to
the relativemerits of actualT)Idata versusMSS data for land cover mapping
relatedapplications.Three analyseswere designedwh((:hhad sensitivityto
the differencesin spectral,spatialand radiometricparametersbetweenthe
TM and the MSS. In the water body analysis,a primarilyspatiallyrelated
test, the detectabilityof small uniformtargetswas examined. The principal
componentsanalysis,an examinationof the inherentdimensionalityof the
data, was more spectrallyand radiometricallyrelated. The spectralclustering
analysis,also heavilyspectrallyand radiometricallyinfluenced,provided
informationon the types of targetsseparableon TM versusMSS data.

These analyseswere to be conductedwith simultaneouslycollectedLandsat-4
completeTM (? band) and MSS (4 band) data. In actuality,4-band TM data,
and archivedLandsat-2MSS data of the same areawere used. This situation
resultedfrom the combinedeffectsof:

1. the need for data over a local area (Washington,DC) with good
referencedata,
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't 2 the delayed acttvatlon of the cooled focal plane (bands 5-7) of the TM
'il. 3. the unavallabtlity of Land_at-4 MSSdata coilected prior to mId_
;. September andyl
_I 4. the lack of any reasonably c]ear Landsat-4 scenes of Wa_hington,
11 DC after the activation of the camplete TM complement of spectral bands
=_ in mld-August and before the end of the growing 5ea_on.

-,; MATERIALSIPREPROCESSING

The TMdata u_ed were July 29, 1982 4-band P-data of the Washington, DCarea
_i (Path 15 Row 33). A 512 x 512 subscene covering an area east of Washington,

, DC including LaPlata, MDwas selected for' analysis. This area was one of the
>i few cloud free portions of the scerle that was covered by July 13, 1982
':: I:40,000 color infrared (CIR) aerial photographs. A mixture of forest_

i agricultural and urban/suburban land cover types occurred in this area. An= MSSscene, July 'II, 1981, of the Washington, DC area was selected for i

i-_ comparison to the TM. From this scene (A-tape) the LaPlata area was extracted
Ten control points on each subscene were identified and the MSSdata was
transformed into TM coordinates using a first order transformation and were

- resampled by cubic convolution to 57 meter square pixels. This resulted in
roughly a MSSP-.type product of 256 x 256 pixels, approximately registered to
the TM data.

., WATERBODYANALYSIS i

_i_ Methods

_' The objective of this test was to provide a quantitative comparison of TM i
:_;I and MSSfor the detection of small uniform targets. Water bodies were

_i i selected because of their uniformity, high contrast with surroundingmaterials and variability in size.

__, All water bodies greater than I0 meters in size were located on the ClR aerial
;!,_ photography. Each water body was categorized by the diameter of the largest

i_i circle that could be inscribed within it. Four categories were established:
,i 10-30 m, 30-80 m, 80-160 m and greater than 160 m, Water bodies in areas of
f[ activesurfacemining were not categorized,as they were characterizedby i

_i high turbidityand were particularlysubjectto changebetweenthe two dates i
...._i of imagery.
"i

.._ The TM and MSS subsceneswere separatelyclusteredusing the ISOCLSprogramon
:;i an !DIMS imageprocessingsystem (ESL, 1978). The MSS was scaledfrom 0-255 (
_:I prior to clusteringand the clusteringparameterswere set equallyfor the
';' two runs with the exceptionthat for the MSS run the minimumnumberof pixels
.,.i per clusterwas set one quarterof the TM value to accountfor the lower
,;_ number of MSSpixels.
;i

r_ The resultsof the clusteringwere displayedon a CRT and comparedto the
_ i aerialphotographson which the water bodieshad been delineated. If comparison
i_! to the reference data indicated that the majority of a cluster's pixels imaged
:,,_i

_..._ water (eithertotallyor partially,i.e.,were pure or boundarywater pixels)
_i the cluster was called "water," otherwise "non-water."
,i
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Each water body Identlfled on the anrialphatQgraph._wa.sthen ch(_ckedto
determinewhetherIt wa_ detectedby the TM and/orMSS. Detmctionwa,_dofineda_ a
minimumof one "water"plxel at tilewater b_dy's locaLion. "Water"plxels
at non-waterbody locatlon;_were consideredcommi,_,_Innerror,s,

RESIIEIS

Two clu,_ter,srepresentedwalm_ on thn TM data; three on the MSS data, Tim
about 10% greaterrange of dl,qltalcQunt_ in the _tretchedMSS data than in
the I'Mdata and the greatereffectof bo_mdari(:;_on the MSS data may have
resultedin the largernumberof MSS cIii_ters,Tht-_"water"pixelsfor TM and
MSS are illustratedin Figure I and the resultsof the detectionanalysisare
presentedin Table I.

Table I
WATER BODY ANALYSISRESULTS

• PONDS CORRECTLYDETECTED

POND SIZE AIR PHOTOS TM MSS
• (Max.

InscribableCircle) #

I0-30m 29 7 (24%) 0 (0%)
30-80m 22 Z9(86%) 5

....80-160m 7 7 (100%) 7 (100%)
m i i (I00%) i (i00%)

TOTAL 59 34 (58%) 13 (22%)

COMMISSIONERRORS

TOTAL -. 6 (15%) 3 (19%)

The commissionerrors for TM and MSS were similar,suggestingthat the water/
non-waterdecisionbo_'ndarieswere comparablefor the TM and MSS data sets,
and thus allowingdirectcomparisonof the detectionaccuracies(omission
errors). The MSS and TM detectionaccuracieswere comparabledown to 80 meter
water bodies. Ponds smallerthan 80 meters were rarelydetectedwith MSS data,
thoughone 40 meter pond was detected.With TM data, the majorityof the ponds
down to 30 meters was detected. Below 30 meters the detectionaccuracies
decreased;the smallestpond detectedon TM data was 16 meters.

The ratio of the minimumconsistentlydetectedpond size on MSS data (+80m) to
TM data (_30m) is commensuratewith the ratio of the advertisedresolutionof
;4SS(79 m) to TM (30 m). Althoughthis appearsto indicatethat the improved
spatialresolutiontranslatesdirectlyto an equivalentsmall targetdetection
improvement,it shouldnot be forgottenthat the spectraland radiometric
differencesbetweenTM and MSS may have alsomade a contribution.
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MSS

Fiqure 1. Pixels in "water"clustersfor TM and MSS data.
" "Water"pixels in white.
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PRINCIPAl_ COMPONENTSANALYSTS

Methods

The objective of this analysis was to compare the information content in terms
of inherent dimensional lty of the TM data to MSS data. The Karh_men-l.oeve
(K-L) transform to principal component_ provides a new set of component images
that are uncorrelated and ordered 'in terms of decreasing variance, The
principal components reveal the dimensionality of the dat_ the relative

. importance of each dimension and the relationship (,feach dimension to the
original data. _,

To perform the K-L transform, first the variance-covariance matrix was
generated for each image. Then the transformation matrices were generated from
the variance-covariance matrices and the principal component images produced.
The r,,sultingimages were contrast-stretched to enhance their visual
interpretibility.

Results

The variance-covariance and correlation matrices (Table 2) illustrate the
frequently observed high correlations between the two visible MSS bands and
between the two near-IR MSS bands, and the low correlations between the near-IR
bands and visible bands. For the TM bands, the situation is similar, with high
intra-visible band correlations and low visible to near-IR correlations.

The first principal component (PC) of the MSS scene is an overall amplitude-
like feature, with positive weighting from all 4 bands (Table 3). The second
MSS principal component is a Near-IR/Visible contrast with positive weighting
from the two near-IR bands and negative weighting from the visible bands. The
third principal component is primarily a band 3 to band 4 contrast with some
negative contribution from the visible bands. The fourth principal component
is a green (band l) t_ _ed contrast (band 2).

From the transformation matrices (Idbles 3,4), the first and second TM
principal components appear similar to the first two MSS principal components,
containing an overall amplitude and a Near-IR/Visible contrast, respectively.
Principal component #3 for TM is similar to PC#4 for MSS containing a blue-
green to red contrast. The 4th TM principal component is dominated by the
green band (2) with some negative red band contribution.

The principal component images, contrast stretched for display (Figs. 2,3)
also show the similarity of the first two components of the MSS and TM scenes.
In each case, these first two components account for almost all of the scene
variance (97% for TM, 98% for MSS). lhe third and fourth MSS principal
components are dominated by striping and appear to contain little useful
information. In MSS PC#4 there appears to be some contrast between the
urban/suburban areas (lighter) and the rural areas (darker). The third TM
principal component, though containing only 2.6% of the image variance, is
relatively noise-free and contains information clearly useful for separating
urban/suburban areas (darker) from rural/bare soil areas (lighter). The
fourth TM principalcomponent is relatively noisy, containing periodic striping.
On this early TM scene the bad detector replacement algorithm for band 2 had
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Table 2
MSS AND TM CORRELATIONMATRICES

MSS TM
1 2 3 4 1 2 3 4

1. 1.00 1.1.00
2. 0.97 1.00 2. 0.93 1.00
3. 0.52 0.48 1.00 3. 0.87 0.95 1.00
4. 0.06 0.00 0.83 1.00 4. 0.37 0.29 0.15 1.00

I

Table 3
MSS TRANSFORMATIONMATRIX (EIGENVECTORS)

MSS CHARACTERIZATION
,, , _,,

BAND1 BAND2 BAND3 BAND4 MATRIX IMAGE i:

PC# 1 0.26 0.42 0.65 0.58 AMPLITUDE! "BRIGHTNESS"

PC#2 -0.39 -0.71 0.11 0.57 NIR/VIS "GREENESS"
CONTRAST I

PC4#3 -0.15 -0.26 0.75 -0.58 NIR 1/NIR 2 STRIPING-CONTRAST NOISE

'NOISE-
PC#4 0.87 -0.49 -0.01 -0.02 GREEN/REDBUILT-UPAREALIGHT i

CONTRAST BAREAREASDARK it

Table 4
TMTRANSFORMATIONMATRIX(EIGENVECTORS)

TM CHARACTERIZATION

BAND 1 BAND2 BAND3 BAND4 MATRIX IMAGE

PC#t 0.57 0.36 0.49 0.66 AMPLITUDE "BRIGHTNESS"

NIR/VIS "GREENESS"PC# 2 -0.27 -0.23 -0.45 0.82 CONTRAST

RED/
PC#3 -0.75 0.13 0.63 0.13 BL_3REEN BUILT-UPAREASDARK

CONTRAST BAREAREASLIGHT

GREENOR BAND-2NOISE
PC#4 -0.19 0.90 -0.40 -0.03 GREEN/RED MISREGISTRATIONCONTRAST
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PRINCIPALCOMPONENT1 PR,,"31PALCOMPONENT2
(61.2% OF VARIANCE) (37.2% OF VARIANCE)

PRINCIPALCOMPONENT3 PRINCIPALCOMPONENT4
(1.2% OF VARIANCE) (0.4% OFVARIANCE)

FiQure 2. MSS Principal Components Images (Contrast - Stretched)
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PRINCIPAL COMPONENT 3 PRINCIPAL COMPONENT 4
(2.6% OF VARIANCE) (0.5% OF VARIANCE)

Figure 3. TM Principal Components Images (Contrast - Stretched)
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not been refined. The level of striping in this component i _Ypected to
decrease with enhanced bad detector replacement routines.

Overall the MSS data in this scene appear to contain basicallj two useful
direction_ of data variability similar to the "brightness" and "greenness"
vectors of Kauth and Thomas (1976). The TM data contain three useful
dimensions in this scene, the first two similar to "brightness" and
"greenness" and the third useful for separating urban from non-urban features.
This third principal component is detecting the spectral flatness of
construction materials relative to bare soil surfaces (i.e., construction
materials are various shades of gray--low red/blue ratio and soils are _
various shades of brown--high red/blue ratio). The greater _ful
dimensionality of TM data in this scene is thought to be du_ to the new TM
band 1, the improved TM radiometric calibration (decreased striping) and the
improved TM radiometric sensitivity.

4
SPECTRAL CLUSTERING ANALYSIS

Methods

The objective of this analysis was to provide a preliminary comparison of the
types of targets identifiable with spectral clustering on TM versus MSS. The
same clustering runs used for the water body analysis were used for this
analys}s. Each resulting class was assigned to a land-cover class by a
majority rule.

Results

Fifty clusters resulted from each clustering run (Fig. 4). Each of these
clusters could be assigned to one of the following classes (or mixtures thereof)
on both the TM and MSS data: water, conifers, mixed wood, hardwood, agricultural/
grass, residential/commercial,asphalt/turbidwater and bare soil/building
roofs (Fig. 4a, b). All of the fifty MSS clusters were defined by
essentially two bands (band 4 and band 2), i.e., there was little overlap at
the one sigma level between the clusters when band 4 was plotted versus band "
2. For the TM, however, several bare soil/building roof clusters had large
overlaps in a band 4 versus band 3 two band plot (Fig. 4a), signifying that a
third band was needed to separate all the clusters. Band l in TM contains
the separability of these clusters (Fig. 4c). The building roofs had a
higher band l response for a given band 3 response than the bare soil areas.
Thus, in TM data better separability of bare from built-up areas is indicated
(Fig. 4c versus Fig. 4d), corraborating the principal components analysis.
Note that this improved separability may not have been totally a result of
spectral factors; e.g., the small size of the built-up features in this scene
may have given the clustering algorithm an insufficientnumber of MSS pixels
to adequately separate them from bare soil.

CONCLUSIONS

A preliminary comparison of 4-band TM data to archival MSS data has indicated:
(1) an improved small target detection ability For TM over MSS data, and (2)
an increased data dimensionality for TM. With TM data, high-contrast targets
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i
down to 16 me_er could occasionally be detected, whereas the comparable figure
for MSS data was 40 meters. Whereas MSS data were basically two-dimensional
in the scene analyzed, even 4-band TM data showed a third dimension
apparently useful for discriminating urban for non-urban features. More
detailed TM to MSS comparison studies are ongoing to better quantify TM
incremental improvements over MSS and to trace the improvements to system
design parameters.
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(
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INTRODUCTION _
Z

:' This researchis concernedwith assessingthe spectral,spacial,and
radiometriccharacteristicsof LANDSATTM and MSS data for detectingand ,
monitoringsubmergedplant communities. The followingpreliminaryresults ,I
focus upon the spectralaspectsof the problemin which a submergedplant :il

canopy is to be distinguishedfrom a surroundingbottomof sand or mud. I

METHOD

Radiativetransfertheoryis used to model upwellingradiancethat would ,i
be receivedby an orbitingsensorviewinga hypotheticalestuarineenvironment,
sh<Jwnin FigureI. The environmentis composedof a clear maritimeatmosphere,
an opticallyshallowestuaryof eitherclear or turbidwater,and three possi-
ble bottomtypes: vegetation,sand, or mud.

The Atmosphere

A clear maritimeair mass is selectedand is describedby Guttman(1968).
Using solar irradiancedata (Gastet al., 1965) as input,solar and sky irra-
diance is calculatedat sea levelas well as path radiancethat would be

receixedby an orbitingsensor. These calculationsassumea solar zenithangle
of 50V.

The Water Column

Irradiancereflectanceof the water columnand bottomis calculatedusing
a quasi-singlescatteringmodel developedby Philpot(1981).

Bd

RI - Kt (l.e'Ktd) + Abe'Ktd (1)
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where RI = Irradiancereflectanceof the water and b_ttem,

Bd _ It,radiancebackscattercoefficient,
l

Kt _ total irradlanceattenuationcoefficient(the sum of the attenu-
at'Ioncoefficientsfor upwellingand downwellingirradiance),

d _:water depth,

Ab = irradiancereflectanceof the bottom.

Equation(1) is used, at the expenseof slightlyloweraccuracy,rather than a
two-flowor Monte Carlo approachbecausethe two necessaryterms,B_ and K+,
are easilycalculatedfrom simplefield measurementsavailablein tMe lltefature
and the amountof computertime requiredis relativelysmall.

The water columnis assumedto be verticallyhomogeneousand the water
surfacecalm and flat. Two very differentwater qualitiesare considered;
clear oceanwater and turbidfresh water. Measurementsrepresentingclear
oceanicwater are documentedin Tyler et al. (1972). Measurementsrepresenting
very turbidwater were made in San Vincente,a man-madelake NE of San Diego,

and are documentedin Tyler and Smith (1970). Calculatedvaluesof Bd and Kt
for both water types are shqwn in Table I.

The BottomT_uT_es"

Three differentreflectanceprofilesare selectedfrom the literatureto
representa submergedplant canopy,sand, and mud. The spectralreflectanceof
each bottomtype is shown in Figure2.

UpwellingRadianceAbove the Earth

The upwellingradiancethat would be receivedby an orbitingsensoris
calculatedas

Los =[HoRI + PaLd] To+Lp, (2)

Los = upwellingradianceat the orbltingsensor,

Ho = the combinedeffectsof the atmosphereand air/waterinterface
upon radiancereflectedfrom the water,

RI = irradiancereflectanceof the water and bottom,

Pa = Fresnelreflectanceof downwellingradianceat the water surface,

Ld = downwellingsky radiance,

TO = opticalthicknessof the atmospherein the zenithdirection,and

Lp = atmo_phericpath radiancereceivedby the sensor.
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Upwellingradiancevaluesare calculatedevery I0 nm over the,wavelengthrange
450 nm to 700 qm. Radiancevaluesare then summedover TM bands I (450_5_0am),
2 (520-600n_.,,and 3 (63fJ-690nm) and MSS bands 4 (500-600nm) and 5 (600-
700 am).

Assessmentof Spe,ctral._uali>_

A spectralqualityindex is definedbased upon the work of Lyzengaand
Polcyn (1978)as

1

" 'B (31

where LT = upwellingradiancerepresentingthe submergedplant canopy

LB = upwellingradiancerepresentinga backgroundof sand or mud.

Equation(3) is quite similarto the equationfor apparentcontrast.
Relativevaluesof SQI betweenbands indicaterelativeeffectivenessin detect-
ing submergedplantcanopies.

RESULTS

SQI valuesare calculatedfor clearwater overlyinga sand bottom,clear
water overlyinga mud bottom,turbidwater overlyinga sand bottom,and turbid
water overlyinga mud bottom. The resultsare shown in Tables2-5 respectively.
In all cases,when the water depth is opticallyshallowTM band 3 and MSS band
S are most effectivein detectingthe submergedvegetation. This is intui-
tivelycorrectsince the inherentcontrastbetweenthe vegetationand both the
sand and mud is a maximumin these two bands. In clearwater, as the water
depth increased,the optimumband shiftsfrom TM band 3 and MSS band S to TM
band I for both bottomtypes. Here, the attenuationof bottomsignal is less
in TM band I than in TM band 3 and MSS band 5. In turbidwater the relative
effectivenessof each band is similarfor all depthsconsidered.

Spectrally,MSS band 4 is quite similarto TM band 2 and MSS band 5 is
similarto TM band 3. Nevertheless,some unanticipatedchangesin relativeSQI
valuesbetweenthese bands are observedwith respectto increasingwater depth.
Shown in Table 4, MSS band 4 is slightlymore effectivethan TM band 2 in
discriminatingbetweensubmergedvegetationand sand at 0.5 meters. When the
water depth increasesto 1.5 meters,TM band 2 becomesslightlymore effective.
Similarresultsare seen in Table 2 and 3 betweenTM band 3 and MSS band 5.

In most cases,SQI valuesdecreasewith i_icreasingdepth. This also seems
intuitivelycorrectas the apparentconerastdecreaseswith either increasing
attenuationor increasingpathlength. In Table 3, SQI decreasedin TM band 2
between0.5 and 1.5 metersand then increasedbetween1.5 metersand 10.0
meters. To understandwhat is happeninghere it is necessaryto know something
about the variationin the opticalcharacteristicsof the water and the bottom
types across the band. Figure3 shows the spectralreflectanceof the vegeta-
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_ tlon and mud withinTM band 2, Whereas,the largestreflectancefrom th_ wg_
,. tationoccurs 'Inth_ lar{l_rwavelengthportionof th_ band, th_ reflectanc_of

tl_ mud incr_as_ toward_the shorterwavnl_ngthr_giQn. The averaqerefl_c_
: tance of the mud i_ slightlylarqerthan _h_ vegetation_o that in th_ abs_nc_
i_ of a water column,the mud w_uld appearbrighter, Also shown in Figur_3 i_
, the total attenuationco_fficlentof th_ c!ear ocean water whi_:hincreases
: significantlytowardsthe shorterwawlen_th regionof the band. Under these

circumstancesthe signalfrom the mud decreasesB_orerapidlywith increasing
water depth than doe_ the vegetationsignal. Figure4 'isa plot of SQI v1'lthout

_ takingthe absolutevalue of the numerator. Valueswt_r(_calculatedfor several
. depths between0 and 20 meters. In very shallowwater, the signal from the mud

i)I is greaterthan the signalfrom the vegetationand the index takes on a negative ". value,.At some intermediatedepth slightlygreaterthan 1,0 meter the two '
signalsare equal and Sql is zero. At still greaterdepths the vegetation

" appearsbrighterthan the mud and SQI valuesare positive. As the depth becomes
__. very deep both signalstake on the value of opticallydeep water and SQI again
•- falls to zero. This emphasizesthe importanceof making opticalmeasurements
> within naturalwatersat appropriatespectralresolutions. If all optical

measurementswere made with a broad band radiometerrepresentlngTM band 2, the
intermediatezero contrastwould never have been noticedand the model pre-

-'i dictionsof upwellingradiancewould have been in gross error.

CONCLUSIONS

_'_. The effectivenessof an orbitingsensorin discriminatingbetweensub-
'_:! merged featuresis determinedby the inherentcontrastbetweenthe submerged

:_i,_ featuresand how stronglythe bottomsignalis attenuatedby the water column.
In opticallyshallowwater th_ i_=i_erentcontrastis the controllingfactor.

_F. Thus, the optimumsen_e_band is thatwhich correlateswith the greatest
..... _nneru_L_u,Lr_s_betweenthe submergedfeatures. In opticallydeeperwater,
_. the optimumsensorband is that in which the bottomsignal is attenuatedthe

-,_ least.

= In the clear oceanwater the optimumband for detectingvegetationon a
_" sand or mud bottomis shownto changewith the opticaldepth of the water. In
- the turbidSan Vicentewater the optimumban_ in opticallyshallowwater
• remainsthe optimumband in opticallydeeperwater.

_, Under certainconditionsthe apparentcontrastbetweentwo submerged
_ featureswill decreaseto zero at some intermediatedepth and then increasefor

yet deeperdepths. This can only be predictedwith detailedknowledgeof the
- spectralvariationof opticalparametersacrossthe sensorband.
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Table 2

snI VALUES*(VEGETATIONVS. SAND)FOR
THECASEOFCLEAROCEANWATER

Band d=O.5m d=1.Sm d=10.Om

TM1 143.8 128.9 49.2
TM2 101.4 79.9 12.5 ,_
TM3 235.8 120.7 0,1

=;

MSS4 108.2 88.1 18.6

MSS5 214.1 117.4 0.5

* Units = (mw/cm2-str-nm)_ x 10"s
:!

Table 3 "
,i

SQIVALUES*(VEGETATIONVS.MUD)FOR : _,
THECASEOFCLEAROCEANWATER

Band d=O.5m d=l. 5m d=l-O.Om

TMI 70.5 62.9 23.4
TM2 2.8 1.8 4.2
TM3 151.8 74.5 0.01

MSS4 13.23 8.5 O.2

MSS5 127.5 67.9 0.2

* Units = (mw/cm2-str-nm)_ x 10"3
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Table 4

SQI VALUES*(VEGETATIONVS. SAND)FORTHE
CASEOF TURBIDSANVICENTEWATER

Band d=O.5m d=1.5m d=lO.Om

TH1 69.4 31.5 14.4
TH2 70.6 42.8 25.6
TM3 174.3 88.9 43.3

HSS4 71.7 42.1 24.5

HSS5 154.8 83.1 42.1

'il
* Units = (mw/cm2-ste-nm)_ x 10-3

J

il

Table 5 ?

SQI VALUES*(VEGETATIONVS. MUD)FORTHE
CASEOF TURBIDSANVICENTEWATER

Band d=O.5m d=l.5m d=lO.Om

TH1 70.5 62.9 23.4
TH2 3.1 1.6 0.8
TH3 109.0 53.5 25.5

HSS4 8.5 4.3 2.2

HSS5 91.4 46.7 23.3

* Units = (mw/cm2-str-nm)_ x 10.3
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Figure 2. _rradiance reflectance of three bottom types used in

the water reflectance model (Philpot, 1981). Sand =

beach sand (Lyzenqa and Thomson, 1978), mud = dark

soil (Lyzenqa and Thomson, 1978), and vegetation = an

infinitely deep Ilex canopy (Gates et al, 1965).
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A FIRST EVALUATIONOF LANDSATTM DATA TO
MONITORSUSPENDEDSEDIMENTSIN LAKES

tl

F. R. Schiebe,J. C. Ritchie,and G. O. Boatwright
USDA-ARS,Durant,OK; Beltsville,MD; and Hous'_on,TX

,!
/

i

INTRODUCTION

Studieshave shown that reflectedsolar radiationmeasurementsobtainedwith ii
hand held instrumentationmade at groundlevel (Ritchieet al., 1976; Whir- I
lock et al., lg81) can be used to estimatesuspendedsedimentsin water
bodies. A linearrelationshipexists betweeninorganicsedimentconcen-
trationand eitherreflectanceor reflectedsolar energy in the near infrared i
band from 700 to 800 nanometers. While portionsof the spectrumat shorter
wavelengthswere more sensitive,the relationshipwas not linearand the
reflectancereachedsaturationlevelsat relatlvelylow concentrationsof
suspendedsediment. At wavelengthsgreaterthan about lO00 nanometersthe
water apparentlyacts as a black body adsorberand the reflectedsolar energy
is very low and completelyinsensitiveto any suspendedcontaminants.

Similarresultshave been observedby researchersusing the LandsatMSS as
the observationalplatform(LeCroy,1982). Apparentlimitationsin the
numberof levelsof quantizationof the radiometricsignaland width of the
observedspectralband preventedsensitivityto concentrationsmuch greater
than about lO0 mg/l.

With the much improvedcharacteristicsof the TM instrumentation,both in the
increasein quantizationlevelsto 256 and the narrowingof the spectral
bands,the capabilityfor measuringsuspendedsedimentsin watew'shouldbe
much improved. The purposeof this paper is to make a preliminaryassessment
of the TM packageas to its abilityto monitorparticulatessuspendedin
water.

STUDY AREA

Lake Chicot,in southeasternArkansas(33° N latitudeand 91° W longitude),
is a large oxbow lakeon the lowerMississippiRiver flood plain. It was



:. formedby a cutoffof the MississippiRiver approximatelysix centuriesago.
Before the 1920'sthe lake, under naturalconditions,was flushedperiodi-

: cally and it was known for its fisheryand recreationalassets. The location
'_ of the lake is indicatedon the NOAA 7 scene illustratedin Fig. I.
Z

During the 1920's,extensionof the main line MississippiRiver levee cut
directflow betweenthe lake and the river and greatly_xpandedthe lake's

" watershed. In 1927 a disastrousflood breachedthe levee and allowedthe
river to flow into the 1_ke temporarily.Since that time the watershedhas

.. beendevelopedand much of it has been clearedfor row crops and other
agriculture• The lake Is dividedinto two parts by a causewaywith the

} southernor lower portionof the lake receivingmost of the runoff.

The lake currentlydrainsa 350 ml2 (900 sq km) watershed• The 'lunate
shapedleke is 11.25ml (18 km) long with an averagewidth of 0.5 ml (0•8

C km)• The averagestage of the water surfaceis 103 ft (31.4m) with a
_ surfacea_ea of 3812 acres (14.5x I06m2)and a volumeof 52,802acre-It
: (65.1x 106mS)• The maximumand averagedepthsat this surfaceelevatlonare
; 30•2 ft (9.2m) and 13.85 ft (4.22m) respectively. A sand-gravelaquifer70
'_: ft (21•3m) thick underliesa 20 ft (6.1m) fertiletop stratumin the entire
_. area.

_:= The qualityor'water in Lake Chicothas deteriorated,particularlyas a
resultof the large diversionof water to the lake and high suspendedsedi-

_ ment and nutrientconcentrationfrom the largelyagriculturalwatershed.
=:;= This has affectedthe lake ecosystemand significantlyreducedthe fishery !i
," and other recreationalassets. _

_ The Corps of Engineershas diversionand lake level stabilizationfacilities
_. under currentconstructionwhich are intendedto preventan excessivequan- :

tity of sedimentsfrom enteringthe lake Landsatis one of the means

:_L proposedto monitorand track changesin the water qualityof the lake.

= METHODS

_" Preliminaryevaluationswere made from a Landsat-4TM and MS_ scene (path .
"_ 023/row037) obtainedSeptember23, 1982. Digitaltapes for the MSS and TM

scene were sampledover ninewater _ites (Fig. 2), Only water sampleswere
_. studiedin this evaluation. At least 140 pixelswere sampledfor the TM data
:.c and at least 15 pixelsfor the MSS data. The averagepixel signalwas cal-
> culatedfor each samplesite.

Ground_neasurementof totalsuspendedsediments,dissolvedsolids,tempera-
. ture,dissolvedoxygen,Secchidepth,chlorophylland otherwater quality

measurementswere made in conjunctionwith the Landsat-4overpassat four (I,
4, 5, 7) of the samplesites. Methodsused to make these measurementshave
beendescribedIn an earlierpublication(Ritchieet a1., 1976).

RESULTSAND DISCUSSION

_' Total suspendedsolids in the lake rangedfrom 168 to 508 mg/l (Tablel).
_i_: Temperaturewas relativelyuniformrangingonly from 27.2 in the lower lake

to 29.fl° C in the upper lake. Chlorophyll-acontentin the upper lakewas

,_i IV-338
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Figure i. Lake Chicot Location Map
(from NOAA 7, Sept 22,

1982 scene).
_I:'.,._'._. i. ,, ;
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Figure 2. Water Data Site Locations

on Lake Chlcot, AR.

Figure 3. TM Band i
450-520 nanometers



",

Table 1

• WATERqUALITY MEASLIREMENTSFORLAKECHICQT

_: _ SecchlDisk
Sample lemperatur_ Total SnlId_'_ l)npth ChloroFhylI a

- Si to* _C refill cm mg/m

, 1 27.2 508 49 22.0
; ' 4 27.9 300 IJ6 23.5
" 5 28,0 314 53 20.0
.; 7 29.0 1OR 48 55.0

, *Sites I, 4, and 5 are at the 'inlet,middle and outletof tilelower
lake and site 7 is in the middleof the upper lake.

..

,!' 55.0mg/m:_which was more thandouble the chlorophyll-a(20.0 to 23.5mg/m;_)
- in the lower lake. During lake August and early September the lake is
,:- generallyat its clearestcondition. By then the sedimentsfrom the previous
- winter rainy season have either settled out or have been flushed out during
>% the summer, On September12 and 13, 1982,about ten days prior to the
. overpass,a 58 mm precipitationevent occurredon the watershed. This 'ain-
... fall and the runoff caused near ideal conditions to exist in the lake on
: September23, 1982 for a measurablesuspendedsedimentgradientto exist?.;. I

_.:' (508 to 300 rag/l)in the lower'lake, Measurementsat the Stoneville,MS,
>_ AgriculturalExperimentStation,35 km east of Lake Cllicotshowedsolar
-.,. radiationcf 1.04 langley/minuteat the exact timeof the Landsat-4overpass
" and the entireday to be nearlycloud free.

-'_ The 512 x 512 pixel (Figs.3 through9) subscenesof the TM data showmajor
.... visualdifferencesin the responseof the differentTM bands to water, TM
,- Band 1 in the blue portionof the spectrum(0.45-0.52pro)(Fig. 3) shows the
.• upper lakewith a uniformresponseexcept for the end of the lake ne_.rthe
_, MississippiRiverwhich has an extensivecypressgrove. The lower lake has a

•:.. responsegradientfrom the inlet in the north of the lake to the outlet in
' the south. TM Band 2 indicatingreflectionin the green (0,52-0.60_.m)
_ (Fig.4) is similarto Band l except that the gradientin the lower lake is
i!. more pronounced. TM Band 3 indicatingreflectionin the visiblered (0.63-
-i 0.69 _Jm)(Fig.5) shows a stronggradientin the lower lake. TM Bands 5 and
L. 7 (Figs.6 through9) all appearto have uniformresponsefrom water. Basi-

cally only TM Bands l, 2, 3, and 4 appearto containinformationrelativeto
_L; suspendedparticulatesin the water and TM Bands 4, 5, and 7 discriminate
.- betweenwater and nonwater.
!,

Basic statisticaldata derivedfrom the digitalreflectionvaluesextracted
• from the nine water sites indicatedon Fig.2 are presentedin Tables2a
.. and 2b. The coefficientsof variationand range to mean ratiosbetween

sites in TM Bands I, 2, 3, and 4 indicatethat informationrelativeto waterr

... qualityis possiblebecausebackscatterof the suspendedparticulatescaused
', greaterrangesin the digitalvaluesand greatercoefficientsof variation.

;_.
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Figure 4. Tbf Band 2
520-600 nanometers

Figure 5. TM Band 3
630-690 nanolneters
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Figure 6. TM Band 4
760-900 nanometers

Figure 7. ' I Band 5
1.55-1.75 micrometers
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• Figure 8. TH Band 6
I0.4-12.5 micrometers

i

Figure 9. 'I'H Baz_d 7
2.¢)8-2.35 Init'r_'c,ILJtl'__
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Table 2a

AVERAGETM PIXEL RESPONSEFOR NINE WATER SITES

Band TMI TM2 TM3 TM4 TM5 TM6 TM7

Mean 75.4 33.3 29.7 14.5 5.9 127.5 3.2
Standarddeviation 8.4 7.2 8.8 2.2 0.3 l.l 0.2
Coefficientof variation II.2 21.5 29.8 15.3 4.9 0.9 4.6
Range 23.4 19:6 23.6 6.4 I.l 3.4 O.5
Range/mean .31 .59 .79 .44 .19 .03 .16

i,

Table 2b

AVERAGEMSS PIXEL RESPONSEFOR NINE WATER SITES

Band MSSI MSS2 MSS3 MSS4

Mean 23.7 18.6 13.3 2.5
Standarddeviation 4.9 6.3 3.5 0.4
Coefficientof variation 20.5 33.8 26.6 15.5
Range 13.8 17.8 I0.6 1.2
Range/mean .58 .96 .80 .48

The averagecoefficientof variationwithin individualsitewere 1.9, 2.2,
2.9, 4.7, 18.0, 0.5, and 31.8 for TM Bands l through7, respectively.This
indicatesthat the pixelsin each samplesitewere uniform. The high coef-
ficientsof variationin Bands 5 and 7 were due to low signalresponse.

Comparisonof the TM Bands (Table3) for water samplesshows a high cor-
relationbetweenBands l, 2, and 3 and a marginalcorrelationwith Band 4.
The data from Band 7 is questionablebecauseof low signallevels. No other
significantcorrelationswere found betweenthe differentTM bands. "

Table 3

CORRELATIONMATRIXr FORLANDSAT-4THEMATICMAPPER
BANDS FOR WATER (N=9)

Band 1 2 3 4 5 6 7

1 1.00 .99 .96 .61 .13 -.03 -.48
2 1.00 .96 .62 .09 -.04 -.54
3 1.00 .81 .Of -.25 -.60
4 l.O0 -.31 -.61 -.72
5 1.00 ._6 .74
6 l.O0 .45
7 l.O0
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Comparisonof TM bands with MSS bands for water (Table4) showedTM Bands l,
2, and 3 to be highlycorrelatedwith MSS Bands l and 2. This is to be
expectedbecausethey view the same portionof the spectrum. TM Band 4 was
highly correlatedwith MSS Bands 3 and 4 for the same reason. No other
highly significantcorrelationswere found. These correlationsshow thatTM
Bands l, 2, and 3 and MSS Bands l and 2 are measuringsimilarinformationand
that TM Band 4 and MSS Bands 3 and 4 are measuringsimilarinformation.
Furtherstudiesare neededto evaluatethe informationcontentof the dif-
ferentsensorsin each band.

Table 4 (

CORRELATIONCOEFFICIENT(r) FOR LANDSAT4 THEMATICMAPPER
BANDS vs. MULTISPECTRALBANDS FOR WATER (N=9)

Band TMI TM2 TM3 TM4 TM5 TM6 TM7

t
MSS l .99 .99 .94 .59 .ll -.03 -.51
MSS 2 .97 .98 .99 .77 .06 -.19 -.56 _
MSS 3 .74 .75 .89 .97 -.20 -.54 -.7
MSS 4 .55 .57 .75 .97 -.28 -.64 -.71

I

Comparingthe grounddata (only4 measurements)with TM data for the same 4
sites indicatedthat TM Bands l, 2, and 3 were highlycorrelated(r >.95)
with totalsuspendedsolids. TM Band 3 had a r >.98. MSS Bands 2 and 3 also
had r >.95. These resultsare consistentwith publishedreports(Ritchieet
al., 197_.;Whitlocket al., 1981) and with studiesmade on Lake Chicotover
the past 7 years (LeCroy,1982; Ritchieand Schiebe,1979).

TM Bands l, 2, and 3 also appearto be highlyrelatedto chlorophyll-a
contentof water. However,our chlorophylldata is clumpedin two regions
(55 and 23 mg/m3) so more data are neededbeforeany conclusionsare reached.

TM Band 6 containstemperatureinformation. It has been shown (Schiebeet
al., 1975) that suspendedsedimentladenwater is expectedto be a few
degreescooler than clearwater, all other factorsbeing equal. Our ground
truth indicatesthat the upper lake temperature(Site7) was two degrees
warmer thanat Site l on the lower lake where the concentrationof suspended
sedimentwas the highest,and aboutone degreehigherthan at Site 5 near the
lake outlet. Some differencescan be visiblyseen in Fig. 8. The area where
the sedimentladenwater enters the lake is slightlydarker than either the
upper lake or the lake near the outlet. The digitaldata shows only about a
two digit differenceto indicatethe temperaturedifference. TM Band 6 data
indicatesthat the MississippiRiverwas apparentlysomewhatcoolerthan Lake
Chicoton this data althoughwe do not have ground truth to corroboratethis
information.
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CONCLUSIONS

I. TM Bands l, 2, 3, and 4 appear to be providinginformationon concen-
trationsof particulatematter suspendedin surfacewaters. These
bands are also highlyinterrelatedfor water samples.

2. Preliminaryevaluationindicatesthat TM Band 3 showedthe best re-
lationshipto surfacesuspendedsolids.

' 3. TM Bands 5 and 7 are usefulfor separatingwater from nonwaterareas.

4. Analysisindicatesthe MSS Bands 2 and 3 can be relatedto suspended
solidsin surfacewater, as has alreadybeen shown from previous
Landsatresearch.

5. Analysisof TM Band 6 indicatesthat while synoptictemperaturepat-
ternsmay be discerned,the digitalsensitivityto a two degree tem-
peraturedifferenceis low.
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SNOWREFLECTANCEFROMTHEMATICMAPPER

Jeff Dozier
Universityof CaliforniaSanta Barbara

INTRODUCTION

In California75% of the agrlculturalwater supplycomes from the
meltingSierraNevada snowpack. The CaliforniaCooperativeSnow Surveyuses
measurementsof snowwater equivalentfrom snow courses,snow depth from
aerialsurveymarkers,and snowcoveredarea from satellitedata to estimate
the amountand the timingof the springrunoff.

Our work on snow reflectancefrom the TM should leadto improveduse
of satellites in snow hydrology.

I) Basin-wldealbedomeasurementsfrom the TM could be used to
betterforecastthe timingof the springrunoff,becausethese
data can be combinedwith solarradiationcalculationsto
estimatethe net radiationbudget. The TM is better-sultedfor
thispurposethan the MSSbecauseof its largerdynamicrange.
Saturationstill occurs in bands -4, but is only severein
band 1.

2) TMband5 can discriminatecloudsfrom snow.

3) Measurementsof snowcoveredarea shouldbe betterwith the TM, :
because the 20m spatial resolution can be used to estimate the
contiguityof the snowcoverabovethe snowline.

SPECTRALALBEDOOF SNOW

Calculations of snowreflectance tn all 6 TMreflective bands (i.e.,
1,2,3,4,5, and 7), using a delta-Eddtngton Model , show that snowreflectance
in bands 4,5, and 7 is sensitive to grain size. An objective in our
investigation is to interpret surface optical grain size. An objective in our
investigation is to interpret surface opttcal grain size of snow, for spectral
extenstor, of albedo. Our results so far are encouraging.

Table 1 and Figure 1 showcalculations of integrated reflectance for
snow over all reflective TM bands, and water and ice clouds with thickness of
Imm water equivalentover Tflbands 5 and 7. In the blue and green bands (I-2)

, snow reflectanceis not sensitiveto grain size, so measurementsin these
._ wavelengthswill show the extent to which snow albedo is degradedby

contaminationfrom atmosphericaerosols,dust, pine pollen,etc. In the red

!
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and near-infrared, snowreflectance ts sensitive to grain size but not to
contaminants, so grain stze estimates tn these wavelengths can be used to
spectrally extend albedo measurements.

I

Table1

TMIntegrated Refleetanees*, _0=60°
,,, %,_ i i i I' i i , ,

opt_e_ g_a{nrad_s (#m) _
band _o zOO 200 500 1oo0 ,

1 .992 .988 .988 .974 .963
2 .98B .983 .977 .964 .949
3 .978 .969 .957 .932 .908

4 .934 .909 .873 .809 .741 _,
s .223 .130 .067 .024 .0:i i
7 .197 ,tO6 ,056 .019 .010 ;,

tuo_e_ aloud, l_r_ _uaJeT
opH.co2 d_'o_otetTadt_ (/j,m.) :,

band . _/ ,e 5 ....,TO ,gO
5 .891 .866 .76g .661 .547 '!_

7 .784 .750 .650 .481 .345 !i_
_e ctoud, Imm _oJer equ,/.,uoJe'r_

opt_caZc_jstatradius(/zm) ;
band I ,_ 5 10 20

[ 61v v6o ass .s13 363 i1
7 ] .765 .730 .642 .478 .341

*Integratedreflectancep is

Pc_ Px¢_(#)Ex d;k
U

p= im

P,o< Cx('f)Ex Jk

wh_re p_ isdirect-beamspectra[snow reflectanceat illuminationangle
_o=COS- Pc.EA isspectralsolarconstant,and @xU)isinstrumentresponse
functionforband_. (Thepc'sofcoursecancel,)

The reasonthat snow reflectancein bands I and 2 is not sensitiveto
raln slze Is that Ice is so transparentto these wavelengthsthat increasing
he size of a snow crystaldoes not slgnlflcant]ychange the probabillt_that
a photon impingingon the crystalw111 be absorbed. Impuritiesace mucn more
absorptivethan fce In these wavelengths,however,so small amountsof
contaminantsw111 affectreflectance. In the near.-Infrared,bands 3 and 4,
ice is s]Ightlyabsorptive,so an Incldentphoton I:_more 11kelyto be
absorbedIf the crystalis larger,and snow reflectance_s thereforesensitive
to grain size. Impuritiesare not so ImportantIn these wavelengthsbecause
their absorptioncoefficientsare not much largerthan those of ice.
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DYNAMIC RANGE

Table 2 gives characteristics of the Thematic Mapper, and, for

backgroupd information, the Multispectra] Scanner and NOAA Advanced Very High
Resolution Radiometer. In the radiance -:olumnsof the table, the quantization

Table 2

L TM. MSS, and AVHRRSpectral Characteristics

=:il! [spectraldistributionofsolarconstantfrom Ref.5]
......

'1

: Themet_vMapper _

=_ '_JJaVe[e_t_ I"_'#,(Z_%CeS(W _t'&-e/.&_&-Is'F-I) _i

:_1 band (50N ampL , Nm ) /VEAL sat. sol_ N ':

_!t 1 .452 - .518 .83 161 621 25.9

2 .529 - .610 1.24 316 540 58.5
3 .824 .893 .95 241 468 51.5
4 .776 .905 ,92 234 320 73,1

iili 5 1,568 1,784 .13 31.7 66.5 47.7
: ? 2,097 2,347 ,087 16.9 24.4 89.3

_! 8 10.422 11,661 (thermal band)- 2::i

_'t Lar_Is_d-2 Ivlulttspse_ral Sea_ne_"

"_ 4 .5 .6 4.0 259 574 45.1
_,i 5 .6 .7 2.8 179 491 36.5'l

!i:i'_ 6 .7 .8 2.3 149 401 37.2 .
:::i 7 .8 1.0 3.0 192 285 67.4

:_ N OAA-7 Advanced Ve_'gHigh Resol_J_o.,tRadiometer

2i .58 .72 .51 518 485 108.8= ,71 .98 .33 341 364 93.7

.:_ 3.53 3.94 (thermal bands)
10.32 - 11.36

- 11.45 12.42

: For the TM and AVI-IRR,the solar constant values were Integrated over the sen-
L_ sor response functions. We do not have response function data for the MSS, so
':_ the sensor wa_ assumed to have a square-wave response.

,,.'!

J::l t
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dl
and ,rrorsand saturationradiancesof the sensorbands and comparedwith the
solar constant, integrated through the sensor response functions. Solar
constant spectral distributions are from the NASAstandard , adjusted to fit
the integratedvaluesmeasuredfrom the Nlmbus-7cavity radiometerof the
earth radiationbudgetexperiment. The last column in the table expresses
thesensorsaturationradianceas a percentageof the solar constant,
integratedthroughthe band responsefunction.

, Snow wlll frequentlysaturatein band I, but In bands 2, 3, and 4 the
saturationproblemis not nearlyas severeas with the MSS, so the rM can be
used to measure snow albedo and thus allow basln-wideenergy budget snowmelt
calculations. Bands5 and 7 wtll not saturate over snow.

h

Snowdoes stretch the dynamic range of the TM, however. Figure 2
showshistograms of all 6 reflective bands for the southern Sierra Nevada on
10 December1982 (northwest portion of path 41, row 35) and Table 3 lists
portions of the image that are saturated in all 7 bands. In band 1 fully 1/8
of the pixels are saturated, and the saturated portion would increase as sun !
elevations get higher tn the spring, i

J

10 u I u I I u * m u

} :o1 _1

£

Ol TM2 i_
.001 , i i i i i

10 , , , i i , , i i i _

i .1 ,
.01

TM 3 TM 4 ,
.001 ' ' I ' ' I _ I I I I

10 , I , o I _w, ! , ,

£

.o1 TM 5 TM 7
.001 ' * I t J

0 100 200 300 0 100 200 300
Radiance Numbara Radiance Numbem

FIGURE2. Histograms of dtgttal radiance numbers for all
reflective bands (1-5,7) for the scene in
Figure 2. The saturation percentages are tn
Table 3.
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Table 3

Blorva Novada and Whito Mountains, 10 l_e 19fh2
_turaUon, TM]_ofloetivo][]eundH

percentage
band saturate

1 1_.25
2 0.15
8 1.40
4 0.07
5 0.00 y
7 0,00 ,,

tl

d

SNOW/CLOUDDISCRIMINATION I
i'

F_gure3 showsTM bands 2 and 5 of the SierraNevada,OwensValley,
and the White Mountainson 10 December1982(northwestquarterof path 41, row i

35). In band 2 both snow and clouds are bright,while in band 5 the clouds
are brightbut snow is dark.

Table 1 and Figure 1 also analyzereflectanceof snow and ice
clouds. In both "shortwaveinfrared"bands,5 and 7, snow is much darkerthan
clouds,and water cloudsare brighterthan ice clouds in band 5. In both of
these bands ice Is highlyabsorptive,and snow reflectanceis low and
sensitiveto 9rain sizefor small sizes,which explainsthe higherreflectance
of ice cloudsthan snow. In band 5 water is less absorptivethan ice , so
water cloudsare more reflectivethan ice clouds.

EFFECTOF RESOLUTIONON SNOWCOVERMAPPING

The major operationaluse of satellitedata in snow hydrologyhas
been In mappingsnowcoveredarea, as an index to the amountof snowmelt
runoff . In mountainousregionsthe usual approachhas beento use the
satellitedatato identifythe snowllne(abovewhich the groundis
snowcovered,belowwhich it is snowfree)and to then measurethe area within
the snowllneas the snowcoveredarea.

Unfortunatelythe elevationof the snowllneIs not alwaysa good
index to the volumeof snow (or snowwater equivalence)in the watershed.
Sometimesa cold stormdepositssmallamountsof snow over a wide area,
whereasa warmerstormwill depositmuch more snow but over a smallerarea.
The finer spatialresolutionof the Landsat4 ThematicMapper might make it
possibleto use texturalinformationabout the snowcoveredarea, and therebyto

I
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_"- better use satellite data to estimate the volume of snuw in a watershed, Even
above the snowllne,there are dlffere$1cesbetweenyears of large acc${mu!atlon

:_ and hernialor leanyears. Rocks, bushe_,trees,etc. may or may not be
: covered. Ridgesmay or may not be blown clean. The spatlalcontlyultyof the
_, snow is also an indexaf its volume,and the TM shouldhelp us e_tlmatethis,

CONCLUSION

-. l.and_t-4ThematicMapperdata Includespectra],channels_ultablefor
:. snow/clouddlscrlminatlonan_ for snow albedomeasurementsthatcan be

, extendedthroughoutthe so]or spectrum, Exceptfor band I, the dynamicra,lge

: ts large enough that saturation occurs only occasionally. The ftner soattaI': resolution gives much better detail on the _nowcovered area,

I ......

i,_
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PRELIMINARY EVALUATION OF TM FOR SOILS INFORMATION

David R. Thompson, Kelth E. Henderson,
A. Glen Houston, and David E. Pitts

NASA Johnson Space Center
Houston, Texas 77058

INTRODUCTION ..

The Landsat satellites have been a valuable and prolific source of remotely
sensed Earth resource data since the first Landest was launched in 1972.

They have been used to make crop acreage estimates 5 and to detect and moni-
tor drought in the U.S., U.S.S.R., and Australia.8, 9 _ny soil survey studies
have been conducted using Landsat data. Soil associations and attendant range
sites _ere identified using Landsat imagery by Seevers et al. 7 Soil associa-
tions have been stratified by manual interpretations from Landsat color com-
posite imagery in regions where polypedons are related to soil drainage 6,
topographyl2,13, 14, or topography and vegetatlon 4. Westin and Frazer13

L

described the characteristics of Landsat imagery that are applicable to its
use in soil survey programs. Using tone, color, land use patterns, and
drainage patterns on a Landsat color composite transparency, they prepared a
low-intensity soilscape map that needed only moderate refinement after field
checking. Welsmiller et al. II made an inventory of soils in Clarlton County, I
Missouri, using Landsat and topographic data; however, they did not attempt i _

to relate soil cover to soil type. In using digital analysis of Landsat data I
from Clinton County, Indiana, Ktrschner et al. z defined 12 soil spectral
classes and 4 vegetation classes. The 12 spectral soil classes were corre-
lated with soil drainage classes and were grouped into 4 drainage classes.
Thompson et al. 10 found that selected soil properties important to plant
growth were separable on natural vegetated landscapes using June and October
Landat data. However, few of the above have significantly advanced the soil
survey process or provided an understanding of the influence of soil on the
spectral signature of vegetation. This lack of progress In using Landsat is
in part due to the coarse spatial resolution (19 m) and the four wide spectral

bands of the multlspectral scanner (MSS) aboard every Landsat since 1972. A
new improved second-generatlon, Earth-senslng satellite called the thematic

mapper _TN) was launched in July 1982. It has a new sensor system with
improved spatial resolution (30 m), spectral separation (seven _arrow bands),
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geometric fidelity and radiometric accuracy. The selectlon of bands for TM
were designed such that four bands (0.45-0.52 1_m, 0.52-0.60 _m, 0.63-0.69 _m,
and 0.76-0.90 _m) are slmilar to the Laudsat MSS bands (0.5-0.6, 0.6-0.7,

0.7-0.8, and 0.8-1.1). Two new bands in the mld-iR region (1.55-1.75 _m and
2.08-2.35 _m) and one in the thermal region (10.4-12.5 _m) should provide new

information for vegetation and soil monitoring. The improved spatial resolu-
tion _over that of MSS) is also an important attribute of TM. A pixel size
of 30 m (ground resolution) in all but band 6 will allow classifir-tion of
areas as small as 2-1/2 to 4 ha. Band 6, a thermal band has a pixel oize of

120 m on the ground; however, the band 6 values have been interpolated to give
a value for each 30 m pixel.

The objectives of this study are to evaluate whether Landsat THprovides in-
formation that could be used for soil association maps and if soil properties

(variability within vegetated fields) can be detected with the new bands on
TH.

Materials and Methods

Thematic Mapper (TM) digital data and transparencies were acquired on

August 22, 1982, over a 185 X 185 km area near the corner of the states of
" Arkansas, Missouri_ and Tennessee. Within this area, Mississippi County,

Arkansas, was selected for evaluation. Transparencies of the seven bands of
TM were made of the county, and a 5 X 6 n mi sample segment was located within ,I

• the county. Wall-to_wall crop identification on the 5 X 6 n ml sample segment Ii

was collected by USDA-SRS personnel along with crop condition data from 30
fields. This information included growth stage, percentage of ground cover,

plant height, soll surface moisture, and other agronomic observations. Each
field was outlined and registered to the TM spectral data. A detailed soil
survey was available for Mississippi County, Arkansas. 1 The soils of the
county are derived from alluvium and provide a wide variety _f soils.

Results and Discussion

The general soll map of Mississippi County was o_erlayed onto the images of

th_ seven TM bands (Figures 1-7). Examination of the tonal patterns of these
soll associations indicate that bands I, 2, and 3 do not have as much contrast
between the various associations that bands 4, 5, 6, and 7 have. Bands i, 2,

and 3 are in the vlslble part of the spectrum while bands 4, 5, and 7 are in
the near and mid IR region with band 6 being the thermal baud. The main
difference between the different soil associations is the drainage and soil

texture (Table 1). At the time of the satellite acquisition, the _rea was
planted iu _oybeana, cotton, and rice with the majority of the ground cover
being greater than 90 percent. Contrast is apparent in TM band 5 (1.55-
1.75 _m) between soil associations 1 and 2. Assoclatim, i is composed of

soils that are loamy throughout and poorly drained while association 2 is
poorly drained soils that have a thick clay subsoil. However_ tn TMS, asso-
ciations 2 end 3 have essentially the same tones, but in TM bands 4 (.76-
.90 um) a,d 6 (10.4-12.5 um), they are different. As the difference in the
two associations is the minor soil, an examination of the available water

holdlng capacity indicates that the Steele soils have 9.2 inches of available
water In a 60-1nch profile while Crowley hes 13.2 inches. Thi_ difference in
available water holding capacity appears to explain the dark tone (cool) for
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association 3 and the light tone (warm) for association 2 in the TM 6 (10.4- _I

12.5 um). The thermal channel indicates that the additional available water

holding capacity of association 3 Is reflected by the cooler crop canopy and
soils. Also, it is apparent that the thermal band is picking up differences

: within associatlon I. An examination of the detailed soll survey indicates

that the light (warm) area within the association contains a soll complex of

sandy soil that is poorly to excessively drained. It appears that the thermal ,,
channel along with the IR channels are reflecting the vegetation responses to

, the available water in the soil. While these indications as to the soil pro-

pertles being reflected through the vegetation are not supportable by ground
measurements at the time of the TM acquisition, it does appear that TH is

providing information which is related to soll properties over large areas
that are related to characteristics of the crop canopy. (_

l:

A subset of fields within a 5 X 6 n ml segment located within associations I

and 2 were selected to determine whether soil properties (as measured by !
variability within vegetated fields) can be related to TM spectral response

and which TMbands are responding to the soil properties. _iI

Ten fields of soybeans were selected such that f%ve fields had uniform soil i!b
types (mapping uvits) and five fields had complex soil patterns. Individual i:

pixel values for each '_ band were extracted for each field. The hypothesis
is that the uulform soll fields will have less variability in the spectral

data within the field than the complex soils if soll properties are being 'i

reflected in the vegetation covering the soil. A plot of the coefficient of !I

variation of each TM band for each field shows that the complex soll fields I

have more within-field variability than the uniform soil fields (figure 8).

A nonparametrlc quantitative comparison of the distribution of the coeffi- ;
cients of variation (C.V.) of the five uniform soils soybean fields with the

distribution of the C.V.'s of the five complex soils soybean fields is pro-
vided in Table 2. The Wilcoxon rank-sum statlstic 3, in the form of an average

rank from the combined distribution of the two types of fields, is used to

test the hypothesis that the distribution of C.V.'s for the unifurm soils
fields is identical to that for the complex soils fields. The hypothesis is

rejected if the median of the C.V.'s for the complex soils fields is signifi-

cantly larger than the median of the C.V.'s for the uniform soils fields.
The results of the test of this hypothesis for each TM channel, as shown in

Table 2, indicate that the median C,V. for the complex soils fields is sig-

nificantly larger than the median C.v. for the unlform soils fields for each
TM channel except channel 6, the thermal IR channel. However, one of the

five uniform soils fields appears as an outlier with respect to the C.V.'s

for the thermal channel 6 (see figure 9). If this field is omitted from the

analysis, the results become significant, i.e., the median C.V. for the com-

plex soils fields is significantly larger at the .005 level than the median
C.V. of the uniform soils fields for band 6. It is believed that the suspect

field has an artlfically increased C.V. for band 6 due to the interpolation
scheme. A significant change in band 6 values occurs near the edge of this

field due to the lower band 6 responses in the neighboring field. No such
effect was observed for the other TH channels.
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For this set of fields, there was no overlap at all between the distributions '
of the C.V.*s for the uniform and complex soils fields for 174 channels 3, 5,
and 7 as indicated by the range of these distributions in Table 2. Also, of
all the channels, channel 7 shows the largest zelative within-field variabil-
ity for both the uuiformand complex soils. It remains to be shown, quantita-
tively, that this difference in _rlthin-field variability between uniform and
complex soils fields for the TM channels is in fact due to the different
soils associations within the fields. However, these results are supportive

of the hypothesis that the _spectral data are responding to the soils
properties being reflected in the vegetation covering the soil.

Sumar 7
t_

Results from this study indicate that the TH bands are providing information
tlmt Is related to the soil properties within the field. Over lerge areas,
these bands also appear to provide information that is related to the soil
properties that are important to plant condition. While these results are
only an indication of the information that TMcan provide, they do indicate
that TM data--especially, the mid-IK and thermal bands--show the capability _
for separating vegetated soil landscapes on a broad basis. The analysis at
the field level with a growing crop also indicates that TM, with its addi- _Ii

tional and narrower bands and improved spatial and radiometric resolution is
influenced by within field variability due to soils that will have to be
accounted for in the analysis of TMdata.
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TABLE I. Soil Associations Descriptions for Mississippi County, Arkansas

Map
Symbol Association Description

1 Amagon-Dundee-Crevasse association: Poorly drained and somewhat
poorly drained soils that are loamy throughout and excessively
drained soils that are sandy throughout.

2 Sharkey-Steele association= Poorly drained so_ls that have a thick
clayey subsoil and moderately well drained soils that are sandy in
the upper part and clayey in the lower part.

3 Sharkey-Crovley association= Poorly drained soils that are clayey
in some part of the subsoil.

4 Tunica-Bowdre-Sharkey association: Moderately well drained and
poorly drained soils that are clayey in some part of the subsoil.

: 5 Convent-Morganfteld-Crevasse association: Somewhat poorly drained
I soils that are leamy throughout and excessively drained soils that

are sandy throughout.

6 Alligator-Earle association: Poorly drained and somewhat poorly
drained soils that have a dominantly clayey subsoil.

i

TABLE 2. Descriptive Statistics Comparing the Relative Within-Field
Variability of TM Channel Values for 10 Soybean Fields--
5 Having Uniform Soils and 5_lavtng Complex Soils

Wilcoxon Rank-Sum
1_4 C.V. RANGE Median C.V. Statistic

Channel U C U C U C

1 (2.2,5.0) (4.6,7.3) 2.8 5.2 3,3 7°7*

2 (3.2,6.9) (1.7,11.8) 4.3 9.0 3.2 7.8*

3 (6.3,12.9) (13.7,25.3) 8.7 18.2 3.0 8.0**

4 (5.4,9.2) (9.0,13.7) 7.6 11.0 3.8 7.2*

5 (4.4,5.5) (7.0,9.4) 4.8 8.3 3.0 8.0**

6 (1.0,3.5) (1.9,2.7) 1.6 2.2 4.0 7.0

7 (9.9,13.8) (16.7,;7,2) 22.6 23.6 3.0 8.0**

U - Fields having uniform soils * Significant at .05 level
C - Fields having complex soils ** Significant at .005 level
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Figure 1:
Soil associations
for Mississippi
County, Arkansas,
overlaid on TM
Band 1 (0.45-0.52 _m)
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Figure 2 : '
Soil associations
for Mississippi "
County, Arkansas,

overlaid on TM _m) t"!
Band 2 (0.52-0.60 1
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Figure 5:
So11 associations
for Hisslssippi
Countyt Arkansas,
overlald on TH
Band 5 (1.55-1.75 pm)

Pigur_ 6:
Soil associations
for Hississippi
County, Arkansas,
overlaid on TM
Band 6 (10.4-12.5 _m)
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THE LISE OF. THEHATIC H;I_PER DATA FOR LAND COVER DISCRIHIN^'PION

- PIIELIHINAIIY RESULTS FllOl',l 'PIIE IlK SATHaP PIII)OIIAI,+IE

- tI.J. ,laeknnn,
,I.R. Baker,

Natural Environme, nt Roacarch CouneJ 1., IlK.

,i.R.C. Townshond,
J.E. Oayler p

J.R. Hardy
I

Reading linlvr_rslty,UK.

The principal objectives of the UK SATHaP programlne are to dl.,tetluine
Thematic _hpper (TH) performance with particular reference to

spatial resolution properties and geometric characteristics of the. 'i!
data. Since no data of the UK test sites have been received so far, I
analysis has been restricted to images from the U.S. and h,,. _',
concentrated on spectral and radiometric properties. ;

'1

Examination of selected sub-scenes reveals that the visible bands i
display a narrow range of digital values. For example, for band 2
over 95% of the pixels are found within 25 out of 255 digital counts.

The histograms are better balanced for bands 4, 5 and 6. Foc example
for band 4 the 95% limit covers 120 digital counts. For classffl-

cation purposes it is not considered that the e_ght-blt quantiza-
tlon available is being effectively utillsed, even it: one takes
account of the limited data set analysed.

In assessing the accuracy of cla_siflcatlon techniques for Thematic tlHapper data the consistency of the detector-to-detector response is
critical. Preliminary stt:dies were undertaken, therefore, to assess

the significance of this factor for the TH. The results obtained

suggest the existence of striping especially in band 4 for the Detroit +
scene. This is related to differences in forward and backward scans !

of the sensor. The average difference is approximately two digital
counts and is clearly present from the eastern edge of the Detroit i
scene to the lake shore near the centre of the image. Examination

of Reel foot Imke in the eastern portion of the Arkansas scene fails

to rew_.al a similar response, nor is it apparent in any part of the

Hississfppl. E_ther a change in response of the sensor or a differ-

ence in the data processing is therefore indicated.

i̧,
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For all throe sub,-sc_nea analysed _here are stron_ correlations

between th_ three vlslble bahds,, the coefficients exceeding 0,9 in
all cases, Of the other band combinations only bands 4 and 5, 5 and

.: 6. and 6 and 7 show any strong relationships. Negative correlations
are found consistently between band 4 in the near infrared and the

visible hands though the strength of these relationships varies
substantially between the sub-scenes.

The over_ll structure of the relationships can be examined by

principal component analysis. For the first two sub-scenes there
are apparently three basic dimensions of variability whereas for
the third this is reduced to two dimensions, since baud 5, 6 and 7
are missing.

In order to examine the utility of the Thematic _pper data more
carefully, six different land cover classes approximately Anderson

i' level I were selected. These included an area of water from the

_,. sediment-laden Mississippi, woodlan agricultural land and urban '_
land. A "plume" class was also selected which includes the plume of

._ smoke emanating from the power station and drifting over the
__ Mississipi river.

m

For the first three bands the overall form of the spectral response
-" is remarkably similar for all classes, whereas for the near and

middle infrared bands considerable differences in overall response

are found. For the thermal infrared band, the means of the classes

ar very similar but is worth noting that the standard deviations

are also very low suggesting this band may have some discriminatory
power.

t ''

Considerable differences can be seen between the correlation

structure of the different categories and that of the whole sub-

scene. For example for water and woodland the correlations between

the three visible bands are much weaker; the usual weak to moderate

negative relationship between the visible baltds and the near infrared
band 4 is replaced by strong positive correlations for the industrial

and plume categories. For the agrlcultural and urban land categories
bands 5 and 6 have moderate to strong relationships with the other

bands except for band 4, whereas the first two sub-scenes as a whole
and the water and woodland classes of one sub-scene show much we._ker

relationships.

If the Eipenvectors of the first two principal components are

examined, it is apparent that although the dimensionallty of the
dat_ is similar for the whole sub-scene and several of the individual

Idnd cover categories, the principal components are orientated very
differently within the seven dimensional feature space. !n other
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:. _ words different bands contribute to very varying degrees to these
, f_rst two components. Relatively speaking bands 2 and 3 contribute

least to the first two principal componentsr and bands 4, I and 5
.. the most. The results stongly suggest that although there may be
:. onlt three dimensions within the data, if we wish to depict the

-_ variability within as well as between broad cover categories then
_' , more than three bands will have to be used.
Lo

The classification potential of the Thematic Happer has been examined

-_" by calculating the divergence between the classes.
,:7

I

. It is notable that except for band 2 all the bands are indicated as _

having significant discriminatory potential for at least two of the !
i[ classes. Overall the results indicate the particular significance of

_." bands 3, 4 and 5 in discrimination between the classes. Additionally
i.'- it is interesting that the thermal band, band 7, is of independent

_. value in discrimination despite its low spatial resolution and a less
._. than optimal time for sensing with this band.

.y

_.:: Advanced classificatory algorithms are being explored to improve
-Y:_._ information extraction from TM data. Specifically the use of carto-

i_. graphlc digital vector data and other remote sensing data in
_'.. registered formats is being investigated to develop classification

_i. techniques which exploit per-pixel, tcxtural and contextual
-', algorithms within the fr._mework of a probabalistic tree classifier

_'_, and an integrated multi-level and multi-parameter data set.

.. The first TH image of the OK was received via X-band transmission to

.: Fuc.!no, Italy and was processed by ESRIN, Frascatl. Qualitative
_'" analysis of the image clearly shows that in rural areas, there is a

:. very significant improvement over the NSS, whereas in urban areas

the improvement is much less marked, probably as a result of the

" high density of English urban development (Fig. 1).

-.
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6. WITIIIN BAND VARIATION IN _PECTF._L RESPONSE

In assessing the accuracy of classification techniques for Thematic

Mapper data the consistency of the detector-to-detractor response is
critical. Preliminary studies were undertaken, therefore, to assess
the significance of this factor for the TM. The approach taken has
been to examine the spectral response of water bodies where spectral
frequency responses are generally low and where for wavebands longer
than 0.7um reflectance is both very low and stable. The results

ootalned suggest the existence of anomalies eepeclally in band 4
for the Detroit scene. Figure 2 shows a profile of band 4 data over

Lake Erie. The striping is related to differences in forward and
backward scans of the sensor. The average difference is approximately

two digital counts and is clearly present from the eastern edge of
the Detroit scene to the lake shore near the centre of the image.

Examination of Reelfoot Lake in the eastern portion of the Arkansas

scene fails to reveal a similar response, nor is it apparent in any

part of the Mississippi. Either a change in response of the sensor
or a difference in the data processing is therefore indicated.

7. INTER-RELATIONSHIPS BETWEEN BANDS

The correlations between the thematic bands are shown in Table 1 for

three sub-scenes. The first two are from the Arkansas scene. The

first sub-scene is the one described above , and the latter includes

an agricultural area and a large region of woodland. The 512 x 512 i
sub-scene from the Detroit scene is centered on Toledo, and includes i

I

a wide diversity of urban land cover types, agricultural land and a
portion of Lake Erie. At the time the latter was imaged the cooled

detectors (for bands 5, 6 and 7) were not operating. For all three !

sub-scenes there are strong correlations between the three visible i

bands, the coefficients exceeding 0.9 in all cases. Of the other i"
band combinations only bands 4 and 5, 5 and 6, and 6 and 7 show any

strong relationships. Negative correlations are found consistently !
between band 4 in the near infrared and the visible bands 3 though

as Table I shows, the strength of these relationships varies substant-

ially between the sub-scenes. The overall structure of the relation-

ships can be examined by principal component analysis, the Eigenvalues
for the three sub-scenes being shown in Table 2. For the f.trst two

sub-scenes there are apparently three basic dimensions of variability
whereas for the third, this is reduced to two dimensions, since bands

5, 6 and 7 are missing.

8. CILARACTERISTICS OF INDIVIDUAL LAND COVER CATEGORIES

In order to examine the utility of the Thematic Mapper data more

carefully, six different land cover classes at approximately Anderson
level I were selected from the first sub-scene. These included an

area of water from the sedlment-laden bllsslsslppl, woodland, agrlcult-
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* Fig, 3 Spectral Response Of Selected Cover Types From Sub-scene l
".. Note that band 7 ts the thermal band.
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• Table 1

_- CORREI_TION ON HATRICES FOR SELECTED LANDSAT 4 TIIEHATIC _APPER SUB-SCENES

Corro.latton Matrix For Sub-scene I

':'_ 1 2 3 4 5 6

• .:_

l I.00

i_ 2 .967 I•00

_: 3 .953 •957 l.O0 '

!'
_:_ 4 -.512 -.473 -.631 1.00

i i'_,
,:_ 5 -• 136 •067 -•245 •713 I•00

• <:_ 'f

,_.c 6 •244 •310 .166 •362 .883 1.00

:.- 7* .347 .391 .298 .008 .567 •745

_:..- Correlation _trlx For Sub-scene 2

_- I 2 3 4 5 6

i_:_:, 1 1.00

__'- 2 .950 i.O0

':" 3 935 904 i .00

i..:- 4 -.148 -.029 -.166 1.00

5 .089 207 .088 849 1.00

"L 1

_"_' 6 .353 .431 .361 .592 .904 1.00

_. 7* .477 .485 .455 .076 .452 .674 I

7_ Correlation _atrlx For Sub-scene 3

- I 2 3

: I I.O0

2 .923 1.00

: 3 .989 .948 1.00

4 -.386 -.330 -.210 Note band 7 Is the thermal b_nd*
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Table 2

EIGENVALUES FOR SgLECTED SUB-HCENES

Sub-scene l

gtgenvalue 1 2 3 4 5 6 7

.745 .204 .042 .004 .002 .001 .000

Sub-scene 2

gigenvalue I 2 3 4 5 6 7

• 868 .099 .025 .003 .001 .001 .000

Sub-scene 3 i !:
; r,

Elgenvalue 1 2 3 4

• 822 .175 .003 .000

Note that band 7 is the thermal band.
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ral land and urban land. ^ "plume" cla_s was also solo.sled which

, includes the plume of smoke emanating from th_ power station and
drifting over the Hississlpi river. The means and standard

deviations for this class are shown in Table 3 and the spectral

response of each class is summarised in Figure 3. For the first

: three bands the overall form of the spectral response is remarkably
, similar, whereas for the near and middle infrared bands considerable

: , differences in overall response are found. For the thermal infrared
band, the means of the classes are closely clustered but .it is worth

" ' noting from Table 3 that the standard deviations are also very low

suggesting this band may have some discriminatory power.

9. CORRELATION STRUCTURE OF INDIVIDUAL COVER CATEGORIES

" Table 4 shows the correls=ion between the TH bands for the individual I

" cover categories. Considerable differences can be seen between !

_, their correlation structures and that of the-whole sub-scene (Table
......ii I_. For example for water and woodland the correlat/ons between the

..... three visible bands are much weaker; the usual weak to moderate

::. negative rel-atlonshlp between the visible bands and the near infrared
" band 4 is replaced by strong positive correlations for the industrial

: and plume categorles. For the agricultural land and urban land

:" categories bands 5 and 6 have moderate to strong relationships with

the other bands except for band 4, whereas the first two sub-scenes
!.

as a whole (Table I) and the water and woodland classes of sub-scene ....

_-. I show much weaker relationships.

The underlying structure of the relatlo_.shlps is sho_t in Table 5
for each of the categories. Except for the water and plume

, categories the elgenvalues are similar to those of the complete

- sub-scenes indicating that there are three basic dimensions. For •
the plume category there are only two dimensions and for the water

category apparently as many as seven. The latter may simply stem

from a near spherical distribution of points of this category in the
residual sub-space. If the elgenvectors of the first two principal

-'. components are examined (Table 6), it is apparent that although the
dlmenslonallty of the data is similar for the whole sub-scene and

several of the Indivldusl land cover cat=.gorles, the principal

components are orientated very differently within the seven dimensio-

nal feature space. In other words different bands contribute to very

varying degrees to these first twc components. Relatively speaking
bands 2 and 3 contribute least to the first two principal components,

and bands 4_ I and 5 the most. These results strongly suggest that

although there may be only three basic dimensions within the data,
if we wlsh to depict the variability within as well as between broad

cover categories then more than three spectral bands will have to be
used.

,[

.. IV-377
J.

..................:......... :............................ 00000005-TSA09



: i
r

Tahl.. 3
!

j.
-- _ANS AND STANDARD DEVIATIONS OF COVER CLASSES FROH SffB_SCF,NE I

1 2 3 6 5 6 7

",:-- NATER
ttean 87.4 38.B 45.4 38.0 7.5 4.4 133.0

,'; ' Standard

-_; Deviation (1.8) (1.0) (1.2) (2.0) (1.4) (1.3) (.8)

__.= WOODLAND

'_ Hean 69.7 26.9 21.I 82.4 51.0 14.8 131.5

-,--. Standard

-_2 Deviation (2.2) (I.I) (I.I) (5.0) (7.6) (2.7) (1.8)

T;:
_,,. AGRICULTURAL LAND
.' Nean 79.2 34.6 31.6 112.5 87.5 32.1 140.0

Standard

:," Deviation (17.9) (II.0) (14.7) (23.7) (10.2) (9.3) (4.0)

7-"_'

,- URBAN

-_" Nean 90.1 39.6 40.0 75.5 76.6 35.9 150.0
Standard

_:_ Deviation (11.4) (7.1) (10.6) (12.2) (13.1) (10.2) (4.0)

"_. PLUHE¢

' Nean 111.4 48.9 55.0 45.0 o 5 5.4 133.0
• Standard

_ Deviation (8.5) (3,7) (3.6) (2.2) (I.0) (I.I) (1.4)

:. INDUSTRIAL
- Hean 144.8 67.3 77.6 68.5 104.9 67.9 153.9

Standard

i_: Deviation (34.0) (18.5) (23.1) (17.2) (24.4) (18.2) (6.6)

Note that band 7 is the thermal band

o,
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Tnble /+

CORRELATION .qTRIICTUREOF COVER CATEC,ORIES

l 2 3 4 5 6 1 2 3 4 5 6

2 .4 NATER 2 .4 WOODIJtND
3 .5 .6 3 .5 .7
4 -.4 -.3 -.2 4 -.l .l -.l
5 .3 .4 .4 -.I -- 5 -.2 .3 .l .6
6 .3 .2 .3 -.I .5 6 -.2 .3 .2 .5 .9
7 .0 -.l -.2 .l -.2 -.1 7 -.2 .2 .1 .5 .8 .8

2 .9+ AGRICULTURAL LAND 2 .9, URBAN
3 .9+ .9+ 3 .9+ .9+
4 -.2 -.2 -.3 4 -.2 -.l -.2
5 .5 .5 .6 -.I 5 .7 .7 .7 .3
6 .7 .7 .8 -.4 .8 6 .8 .8 .9 -.2 .8
7 .5 .5 .5 -.7 .3 .6 7 .5 .4 .5 -.6 .I .4

2 .9 FLUt_ 2 .9+ INDUSTRIAL
3 .9 .9 3 .9+ .9+
4 .9 .9 .9 4 .8 .8 .9
5 .5 .5 .5 .5 5 .7 .7 .7 .7
6 .I .I .I .I .3 6 .6 .6 .6 .4 .9
7 -.3 -.4 -.3 -.3 -.2 -.l 7 -.2. -,2 -.2 -.l. -.4 -.4

+ indicates correlation above 0,95

Table 5

EIGENVALUES FOR INDIVIDUAL LAND COVER CATEGORIES

l 2 3 4 5 6 7

NATER .40 .25 .13 .08 .06 .04 .03
NOODLAND .77 .14 .O6 .01 .Of .01 .00
AGRI LAND .59 .33 .06 .01 .00 .00 .00
URBAN .66 .25 .06 .02 .01 .00 .00
PLb'I,_ .94 .02 .01 .01 .01 .Of .00
INDUSTRIAL .82 .12 .04 .01 .00 .00 .00

Note that band 7 is the thermal band
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I

T.hl. 6

FI,RST 2 EIGENVECTOR/IIANDLOADING5FOR EACHCOVF.Ii(IATF,(IORY
(Ah,o].ute value, abt_ve 0.5 .re underlinod)

Band numbor

WATER 1 ,56 ,29 ,36 ,53 , r.- ,3,_ ,25 -',OO

2 -..39 -,O4 -,14 -,82 -.29 -.21 .12

WOODLANDI .O6 --,03 -.O1 -.42 -,85 '-.27 -.16

2 ,03 -,O5 -,05 ,90 -,37 -.15 -.15 ,'

AGRICULTURAL
LAND I -,53 -,33 -,46 ,52 ,-,19 .=.26 -,06

2 ,38 ,23 ,25 ,84 ,17 ,05 -.06

URBAN 1 -,48 -,30 -,46 ,03 -,52 -,44 -,05

2 ,14 ,05 ,14 -,89 ,39 ,05 ,13

PLI._IE I -,84 -,36 -,34 -,20 -,05 -.01 ,00

2 -,20 ,21 ,22 ,06 ,09 -,04 -,92

INDUSTRIAL
1 -,63 -,35 -,43 -,28 -,39 -,26 ,00

2 -.35 -,18 -,21 -.12 ,67 .57 _,05

NHOLE l -,12 -,06 -,14 ,72 ,63 ,21 -,00
SUB-
INAGE 2 -,26 -,2 -,33 ,50 -,54 -,48 -,12

Note that band 7 is the thermal band,
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':. IO. DI,qORIHINATION BETWEEN _OVEft eATEfiORIES
v

: The clant;lflentnry patnntial of the Thamatlt_ bleeper bands may bt_
axamlned by calculating tim divergence betwenn the _lannnn I. Table

:. 7 Hllown the "o.r b_mt Imndo from the seven TM bands in dineriminatinR
bo,twaen any otto clans front any of tile other elanaoa and the four
bent bands In flimultan_oualy distinguishing Imtweon I:hc clannot_.
It in no_able that except for hand 2 all the hands arn indicated an

;' having significant dl, seriminatory potential for at least: two of t:ho

classes. Ovora].l the re, aults J,ndlcato the parttc.lar significance
of hands 3, 4 and 5 tn discrimination between the classes.

Additionally it to interesting that the thermal band, hand 7, is of
independent value in discrimination despite its low spatial resolut-
ion and a less than optimal time for sensing of this band.

II. I_RJACTS ON IaXND COVER CLASSIFICATION

:" Whilst the above comments have naturally stressed the anomalies and

.: error factors associated with the _I it should be clearly stated
that the overall performance is considered to be excellent. Consider-

able potential exists with the TH data for improved classification

i_ performance over that available from MSS. This is due not only to

the improved spatial resolving capability but to the greater real
_" dlmensionallty of the data.

: The improved land cover classification accuracy will not be achieved,
however, merely by applying the tradltonal per-plxel classifiers so

_: frequently used with MSS data. In fact in some circumstances such
procedures could result in reduced accuracy2. Attention is

, therefore being given to improved techniques and procedure for
classification of Tbl data. The Thematic Information Services (TIS)

"" of NERC incorporates the Experimental Cartography Unit (ECU) which '
over the last 15 years has acquired large quantities of digital

vector data and developed a large body of software for manipulating

and overlaying vector/polygon data sets, Software has now been

written to allow any of these data contained "_thin the cartographic
data-base to be imported and registered wit the satelllte data 3.

In addition the airborne scanner data acqultad in September 1982 is

seen as the first acquisition of a regular programme of flying and

again the imagery is being input and registered with the map and

satellite data. The opportunity therefore exists to apply
classification techniques which exploit per-Dixel, taxtural and
contextual algorithms within the framework of a probabilistic tree
classifier and an integrated multi-level and multi-parameter data
set. As for the characterisation of the TM geometry and spatial
resolving properties significant further progress awaits TH data of

the UK but prellmlnary results using the airborne Daedelas and MSS

data are promlslny nnd are being applied in a number of studies

ranging from ccol[ogy to epldemlology.
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Tahle 7

, DIVF,RGENCEBF,T_F,N Cl_q_qE_l: BI_T FOUR BANDfiFOR
DI_CEIHINATING BETWEEN CLA,q,qEs

1 2 3 4 5 6 7

Water X X X X

Agricultural X X X X
Land

Woodland X X X X

Orband X X X _,

Plume X X X °

_nduatry X X X

All classes X 1, X

Note that band 7 is the thermal band,
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II ]:'. PI{EI,IHINARY ANAI.Y._ISOF TIIE FIRST UK SCENE

I

_Im /:_rst fH Ima}_o of the IlK was obtained In danlmry ]983. _)Is

imaRe waft received via X_band transmlssJon at Flle_no, Tta]y and

processed at EaR[N, Frascntl. Unfortunately the seelle includes
neither of our [IK £eflt areas but does include the towns within

_I which our two research Intltltutes are found. At present only a

sin_.le, TH band 4 image ham been received but some preliminary

eva]nation is possible. Two obvious defects are found in the Image.
The first relates to shlfts due to n lack of registration between

forward and reverse scans. The strength of the shift _s up eight

pixels though normally it is three or less. This shift apparently
arises because precise orbital data have not been used in image

processing so that corrections for minor changes in satell_te
orientation have not been included. A number of drop-outs can be

seen thoughout the image. Thelr origin is not currently understood.

Currently steps are being taken to correct these minor defects.
These have digital counts between 50 and 80 rather than zero. It

should be emphaslsed, however, that ESA released this scene to

European Pl's at the earliest possible time with the knowledge that

these problems existed. In terms of information content tbls image

. represents a very substantial improvement on Landsat NaN data in
terms of the detectability of $,round targets especially in rural
areas. In the upper and lower parts of the scene, it is apparent

that individual fields are readily detectable, see figure 4 which

certainly was not true in this ares with NSS data. In several places

narrow hedgerows can be seen which are less than 6m across end most
of which are less than :]m across.

The River Thames can be seen meandering across the northern half of

the image. The large black areas are gravel pits, now f_lled with
water. The main through route in the area (the Nd) can be seen in

the southern part of the image. Whereas the image is signiflcantly '
better in rural areas than the HSS, in the urban areas the improve-

ments are much less marked. The urban area Is represented by the

mottled dark tones across the full width of the central part of the
image. Compared with images of urban areas in the US such as Detroit

and _ashington D.C., the results are apparently rather disappointing.

llowever it must be noted that the density of urban development is in
general much higher in English than Ameri(an cities and hence much

less ground detail will be detectable. For resolution of the details

of urban structure of cities like Readln_,, spatial resolutions of

20m or better will be required.
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ORIQfl_IA_PAQE _
OF POOR QUALIT_

Flg. 4 Preliminary T_[ band 4 sub-scene of Reading UK. Scale Is
approximately 1:65,000.
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PRELIMINARYSTUDY OF INFORMATIONEXTRACTIONOF LANDSATTM DATA FOR A
SUBURBAN/REGIONALTEST SITE

_ David L. Toll
NASA/GoddardSpace FlightCenter
Earth ResourcesBranch/Code923

Greenbelt,MD 20771

OBJECTIVE

The primaryobjectiveof this study is to assessthe TM sensorimprovements
relativeto MSS for use in a land cover discriminationevaluation. The actual
TM sensorparameterimprovementsstudiedincludes: (1) increasein spatial
resolutionfrom 80m to 30m; (2) spectralb_nd additionsof TMI (0.45-
0.52 _m), TM5 (1.55 - 1.75_m), TM6 (I0.4- 12.5_m) and TM7 (2.08- 2.35 _m);
and (3) increasedquantizationlevel from 6 bits MSS (0-63)to 8 bit TM (0-
255). An additionalobjectivewas to assessthe spectral/spatialinformation
contentof TM for regional/suburbanland cover discrimination.

STUDY SITE DESCRIPTION

The rapidlyurbanizingarea north of Washington,D.C. betweenBeltsville,MD
and Laurel,MD was selectedas a test sit_, Fig. I. This area is
representativeof developingurban fringe ,,.the UnitedStates where planners
and administratorsare forcedwith seriousdecisionsbut have little
information.A wide range of land use/landcover types occur in the study
area. The major cover types and those used in the analysisare water, forest,
agriculture,excavatedsites,major transportationroutes,commercialand
industrialsites,and residentialneighborheJds.The study _ite was chosento
includea 500 x 500, 28.5m TM pixel size,yieldinga 14.25km( size area.

DATA DESCRIPTION

A 500 x 500 array of TM pixels (28.5m)coveringa 14.25km2area was selected
for analysis. Initially,a four band July 29, 1982 TM datawas obtained,Fig.
2. The two middle infraredand one thermalinfraredband detectorswere not
yet activated. Effectsfrom a cloud shadoware evidentin the right center,of
Fig. 2. The cloud shadowedareawas not used in any quanLitativecalculations.
Seven band, cloud free TM data was also obtainedon November2, 1982. The
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OflIGI_IAL PA_ _
OF pOOR QUALtT_

!_))"i Fig l Beltsville-Laurel,MD Study Site Indicatedby Box NE of Washington,D.C.
._ thermalband was determinedto be systematicallyoffsetand was shiftedto
i registerwith the other six bands. For selectedquantitativecomparisonsto

i TM, LandsatMSS data was acquired. Since the July 29, 1982MSS data was not
recorded,a Landsat-2MSS scene on July II, IgSlwas used (Fig.3). The

:_ November2, 1982 Landsat-4MSS scenewas collectedand includedin the data
base. To as.istall evaluations,color infrared(CIR)photographyof 1:40,000
scale flown on July 13, was used. A comparisonof MSS and TM spectral,
spatial,and quantizationcharacteristicsis given inTable I.

) Fig 2 Landsat-4TM of Laurel-Beltsville,MD Study Area
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-:_!! Fig 3 Landsat-2MSS of Laurel-Beltsville,MD Study Area

 ii.!
-_:" Table 1
_ii:'i LandsatIV SensorCharacteristics

d

ThematicMapper (TM)

7_.i SpectralRegion Band _ Ground IFOV Pixel Size quantization

_- Blue 1 0.45-0.52 30m 28.5m 8 bits
" i

' Green 2 O.52-0.60 30m 28.5m 8 bits
: Red 3 0.63-0.69 30rn 28.5m 8 bits
;" Near Infrared 4 0.76-0.90 30m 28.5m 8 bits

i Middle Infrared 5 1.55-1.75 30m 28.5m 8 bits
Middle Infrared 7 2.08-2.35 30m 28.5m 8 bits

.... Thermal Infrared 6 I0.4-12.5 120m 28.5m 8 bits
-i"

' MultispectralScanner(MSS)
: Spectral Region Ban._.__d_ Ground IFOV Pixel Size quanttzation

Green 4 0.50-0.60 83m 57m 6 bits
Red 5 0.60-0.70 83m 57m 6 bits
Near Infrared 6 0.70-0.80 83m 57m 6 bits
Near Infrared 7 0.80-1.10 83m 57m 6 bits

.7",o

r"
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METHODOLOGY

Photointerpretation

The initial procedure was to photointerpret the test site from the CIR. The
seven _ajor classes listed previously were delineated for the entire test site.
A 250mL minlmurn mapping unit size was used. The photointerpreted work was ;sed
as reference data for quantitative comparisons with processed TM and MSS data.

R__istration

To facilitate comparisons between MSS and TM and to reduce sampling costs, TM
and MSSdata were registered to one another using a quadratic linear
transformation. Approximately 10-15 tie-points were selected for each of the
four TM and MSS scenes and three of the scenes were independently registered to
the July 29, 1982, Landsat-4 TM master scene. Average control point residual
accuracy was less than one TM pixel cell size for each of the thre_
registrations. In order to reduce possible spectral biases in the digital
analysis through resampling, a nearest neighbor resampling scheme was
implemented in which spectral data was not spectrally transformed, but was
instead replicated. The resultant TM and MSS images all had a 500 x 500 28.5m
pixel size.

Sensor Parameter Manipulation

In order to study effects of the "improved" TM sensor parameters, spatial
resolution, spectral region and quantization level on cover class
discrimination of digital spectral data, a design was implemented in which all
possible sensor parameter combinations were considered. Sensor parameter
specifications for both the MSS and TM were assessed, which yielded a 3 factor
(i.e., 3 sensor parameter), 2 level (i.e., TM and MSS) design that provided 8
total combinations. Given next are the eight possible data arrangements.

Spatial Resolution Quantization Spectral Bands* .

I. 30m 8 bits 6(4) bands
2. 30m 8 bits 3 bands

3. 30m 6 bits 6(4) bands
4. 30m 6 bits 3 bands
5. 90m 8 bits 6(4) bands
6. 90m 8 bits 3 bands
7. 90m 6 bits 6(4) bands
8. 90m 6 bits 3 bands

At the top of the listing is the untransformed TM data. The following six
sensor parameter arrangements are partial simulations between TM and MSS sensor
parameters, in order to assess each possible combination. The last parameter
combination is a simulation of MSS parameters. Because of the 120m2 spatial
resolution of TM6, the thermal infrared band (TM6) was excluded from this portion of
the analysis. To preprocess the TM data, three MSS data simulations were required:

I. Thirty meter TM spatial resolution to 83m MSS spatial resolution;

I *Only 4 TM bands are available for the JuJy 29, 1982 data set.
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'I
2. Eight bit TM quantization to 6 bit MSS quantization;

I

3. Six TM band spectral regions to 3 MSS bands spectra] reglon_.

: In order to approximate the spatial characteristics of MSS data from TM data,
an equally weighted 3 x 3 digital filter was convolved with tileTM data (28.5m
pixel size). This produced data with each pixel influenced by radiation from
an area approximately equal to the MSS ground IFOV. The MSS pixel size was
obtained by skipping every other line and sample of the digital image when
performing the convolution. Six bit quRntization was approximated by simply
dividing TM data by 4. The TM spectral bands TM2, TM3 and TM4 were subset in
order to simulate the MSS bands MSS4, MSS5 and MSS7 (see Table l). MSS band 6
was not related to any of the TM bands. In further investigations, other TM
spectral band combinations for use in land cover discriminations were assessed.
Last, selected MSS data band combinations were also analyzed.

Sampling Procedure

Sampled pixels from the TM (and MSS) data sets were used to derive statistics
for inferences on data information content and sensor parameter importance.
For each of the 7 classes (or strata) 75 pixels were selected using a
stratified-systematic procedure. Seventy five test pixels was determined to be

adequate after inspecting various confidence levels as a function of sample
size.-,L Since the same pixels were also used as training statistics the
number of pixels necessary for computation of class signatures (e.g.,
computation of a covariance matrix) was also considered. The actual number of
samples is a function, for example, of the number of variables, the number of
classes, and the a_ probabilities.3 The reduction in the probability of
error for the cl_sifier by increasing the sample size from 75 to a higher
number was considered too costly to merit a sample size increase. Possible
bias from using the same pixels for both defining the training statistics and
test sites was reduced by selecting noncontiguous or widely distributed pixels.
Further, if the classification accuracy was inflated it is reasonable to assume
the increase would be similar between the eight sensor parameter data --
arrangements. '

In order to determine an estimate of the grid spacing between sample selections
the total number of pixels for each class was estimated and this total class
area number was divided by 75. Pixels were selected through use of a CRT
console in a triangular network in which pixels are located at the vertices of
equilateral triangles. Noncontiguous or sampled pixels were chosen in order to

increase the independence of the observations, thereby reducing,probablestatistical bias from using dependent (i.e., adjacent) pixels._

Measurement Criteria

When assessing TM and MSS data, both classification accuracy and transiormed
divergence statistics were evaluated. For this paper, results from overall
classification accuracy are presented. Overall classification accuracy is the
total correct designations of the sampled pixels divided by the total number of
samples (525 total pixels). Transformed divergence is a normalized measure of
the separability or dissimilarity of the spectral classes. As recommended by
Swain,o the average pair-wise divergences between all classes may be used, as
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, in this study, to obtain an indication of overall class discrimination
performance, In the classification accuracy assessment, a standard Gaussian

" i quadratic maximumIilcellhood classifier on a per-pixel basis was used,

Sub-Class C1usterln 9 for Tralnip_ Statistic Generation

. ) Each class in each data set was independ( ly clustered to obtain training
statistics, The parameter specification in the clustering algorithm was
modified according to the spectral varlability associated with the quantization

' level and spatialresolutionof the data set. Previousexperienceindicated
; additionalspectralinformationis associatedwith higherspatialresolution

data for landcover classesas evidencedin increasedvariabilityand
multimodalfrequencydistributions. The increasedvariabilityand modes
indicatessubclassinformation(or noise) for a given cover class. Clustering

• ; was implementedin an attemptto capturethis added variabilityand also to
providenormalor unimodalfrequencydistributionsfor the classifier.

I
i

:_i Principa]ComponentAnalysis

• )

Y'I To assessthe informationcontent in the TM data, principalcomponentsor
linearcombinationsof the data were also assessed. A Karhunen-Lmfve
transformationwas used. Throughcomparisonsto MSS principalcompooents,a
quantificationof the differencein informationcontentcould be assessed. The

)_... comparisonscomprisedan assessmentof output imagesand both classification
_.= performanceand transformeddivergenceestimates. Classificationaccuracyand
_.;_ transformeddivergencestatisticswere computedfrom use of pixel coordinates

selectedthroughthe samplingprocedurediscussedpreviously.
i'"

RESULTSAND DISCUSSION
{ .

CorrelationAnal_sis

ic Correlationsfrom the 4 and 7 band TM and 4 band MSS data sets are given in
Table 2 (A-D), Typlcally,the highestcorrelationsoccur withineach of the
major spectralreglons--visible,near infrared,and middle infrared--forboth
TM (Table2A: TMI, TM2 and TM3; Table 2B: TMI, TM2 and TM3; and TM5 and TMI)
and MSS (TableZC and ZD: MSS4 and MSS5; and MSS6 and MSS/). Typically,most

_ of the varitionmay be explainedby one band from each of the spectralregions.

Sensor ParameterStudZi "

:: Resultsfrom the sensorparameterinvestigationfor the November2 TM data are
given in Table 3. Resultsof classificationaccuracyand transformeddiverga,lce
assessmentsclearlyindicatethat adding the three new TM spectralbandWTMI,
TM5 and TM7) (e.g.,-5-10%increasein accuracyand -100-300increasein
transformeddivergence)and/or increasingthe quantizatlonto approxlmately8
bits (e.g.,"3-8% increasein accuracyand -25-100increasein transformed
divergence),improvedland use/landcover spectraldiscriminationsare
posslble. Of the two parameters,the added spectralregionsis of more
importance.
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Table 2
LandsatTM and MSS Band Correlatlon_

A (7/29/82) B (7111181)

TMI TM2 TM3 TM4 MSS4 MSS5 MSS6 MSS7

TMI l MSS4 I

TM2 .96 1 MSS5 .98 I

TM3 .96 .98 I MSS6 .61 .68 1

TM4 .10 .18 -.16 I MSS7 -.02 .06 .14 I

C (11/2/82) D (II12/B2)

TMI TM2 TM3 TM4 TM5 TM7 TM6 MSS4 MSS5 MSS6 MSS7

TMI l MSS4 1

TM2 .98 l MSS5 .88 I

TM3 .83 .8g 1 MSS6 .74 .70 1

TM4 .57 .62 .65 1 MSS7 .43 .39 .84 1

TM5 .76 .81 .79 .20 1

TM7 ,84 .87 .84 .65 .95 1

TH6 -.05 -.10 -.16 .05 .09 .07 1

On the other slde,when degrad!ngthe spati@1res,,lutlonfrom 30m to 90m there
is a substantial_ncreaseIn d_gitalclassific,_tionaccuracyand transformed
divergence,Table 3 (e.g.,"3-9% Increasein a_cur'_c._and "75-I00increasein
transformeddivergence). This is attributedto the reducedwithin class
variabllityas a resultof averagingthe spectralheterogeneityat the
slmulatedenlargedfieldof view. The classmean spectralvalueswill remain
essentlallyunchangedand hence the betweenclass variationwill remainthe
same. The overallresultIs an increaseIn class separabilityand subsequently
an IncreaseIn classificatlonaccuracyand transformeddivergence.

The Increasein classificationaccuracyat the degradedspatialresolution
occurredeven thoughthe classesfor a11 data setswere subcategorizedthrough
data clustering. As a resultof the added spectralvariabilityIn the 30m •
data, It was expectedthe higherresolutiondata would exhibitimprovedclass
discriminationsin contrastto lower resolutiondata. However,results

IV-393

. • .... O0000005-TSB11



TABLE_;

TM SENSOR PARAMETER INVESTIGATION*
LANDSAT TM NOV. 2, 19B2
BELTSVILLE-LAUREL, MID.

SPATIALRESOLUTION

3ore Born

70,7% .5.1%
8 BITS 1679 T,D. t952 T.D,

6 BANDS

6 BITS 73,7% 77,9%17_1 T,D, 1882 T.D,

69,3% 74.7%
8 BITS 1576 T.O. 1729 T.D.

3 BANDS

6 BITS 66,5_ 69.1%1544 T.D. 1648T.D,

*Results are given by overall classification accuracy (%) and
average pair-wise transformed divergence (T.D.)

Table 4

TM SENSOR PARAMETER INVESTIGATION *
LANDSAT TM JULY 29, 1982

BELTSVILLE-LAUREL, MD.

SPATIAL RESOLUTION

30m 80m

81.7% 85.3%
8 BITS 1876 1".0. 1889 T.O.

4 BANDS "-
81.1% 84.2%

6 BITS 17301".1:). 17301.0.
. I

74.5% 80.0%
8 BITS 1761T.O. 1797 T.O.

3 BANDS _ _

6 BITS 74.8% , 78.9%1730 1".0. 1739 T.O.

*Results are given by overall classification accuracy (%)
and average pair-wise transformed divergence (T.D.)

._ -------
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indicated cla_,._ilicatiun,tccuracyImp__}v(_d,qq_r(J×imat(_'lyhy 5-7% (or Iml,hlore
and 90m data (:lu_tnrin.qnvf:rnonclilsl:(,,'irlq.Frnm I,ho.sniindlnq._,,l:ll#_,_,-I.Ii_
increase in classiflc,ll,lonacctlr,lcydnd l:r,mf;fnrlneddivm_q(:nc(:;il.the _nnsor
parameter r,peclficatlon of TM (upper left b_x In Table,3) _ver MSS (l_wer
right bnx in T,_l)lo.3) i:',from the added gpecl:ralhands ,ledfiner quanl,i_atlnn
lew._lImprovement_;_md not from imprnw:d :_p,lti,:_lresnlutlnn.

In Table 4 _:!nsorparameters result;_ar(!giveh ((m the.July 29, 1987 I.,mds,:_t4
I

band TM !_cene. In ('ontr,_wtt.oTable 3, tlmr(;i_ on'y a n_uli!]ibledecrease in _i
overall accuracy (0.1%) _Indmodest decline it,transformed diw:rgence (30-100)
when changing from B bits,to 6 bits. The decreased import.armeof quantizatiun
in July relative to November is partially assuciated with a difference in
spectral class contrasts from phenology cl1_nges. On July 29 wgetation growth
is at a near peak and is providing useful spectral information when discriminating
land cover in comparison to the foliage loss and spectral changes (i.e., green
to red and orange leaf changes) that is occurring on November 2. Further, the

:. reduced solar elevation on November 2 also reduces spectral contrasts between
classes. This hypothesis may be substantiated by comparing the lower four

: cells in Table 3 with Table 4. For these cells the sensor parameter settings
" between dates and sample locations are similar. However, in the November TM

scene, Table 3, the classification accuracies and transformed divergences are
all lower ('5-I0% accuracy and "70-1go transformed divergence) as compared in
a cell-by-cell basis with the july TM data in Table 4. Hence, the expanded
spectral range or quantization may facilitate class discrimination on November

• 2, but may be not as important or necessary on July 29. Similar to the
November findings, the removal of a spectral region (the blue-green TM band I)
resulted in a decrease in accuracy and divergence. However, the decreases are
not as large in Table 3, when the middie infrared bands were also included.

L

Similar to the findings given in Table 3, when decreasing the spatial
resolution to that approximating MSS, there is an increase in overall
classification accuracy (-3-6%) and transformed divergence (~I0-40) as
indicated in Table 4. Again, this is a function of the within class variation
that is larger than in comparison to the "smoothed" 90m data. One important
factor not assessed in this study is the effect of boundary pixels as a
function of varying spatial resolution. The higher the spatial resolution
(i.e., the smaller the cell size) the smaller is the number of mixed pixels
proprotional to the total pixels. Mixed class pixels, of course, typically
results in increased spectral class confusion.

Table 5 includes a list of overall accuracies for selected band combinations

to the November 2, 1982 TM and MSS scene. First, when adding the thermal
infrared band, TM6, the overall accuracy increased by 4.5%. This increase is
a significant increase over 6 band_ excluding TM 6 and may be partially
attributed to additional spectral information. Fig. 4 indicates the water
area appearing dark or cool, with the forests, agriculture, residential
neighborhoods and commerical/industrial complexes appearinn consecutively
brighter or warmer. The overall spectral contrast is Iowe_"for the thermal
infrared when compared to the other spectral bands. The reduced contrast was
also indicated by the nacrow dynamic range of the thermal data and may be
partially a result of the degraded 120m spatial resolution and the reduced
sensitivity of the detectors. However, even,with collection during a sub-
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optimaltime of day (9:30 localtlm_) and th_ llmitoddynamicrange,results
indicatedth_ thermaldata contributed_ignificant]ytn _poctraldiscrimination
betweenwater, vegetatlv_cover,and impm'viou__urfac_ cempr+slnqground
cover classes.

T_Ie5

C1assiflcatlonAccuracySummaryfor'Novombor2, I_82
TM and MSS lJata

7 Band TM B3.2_
6 BandTM, Excluding TM6 78,7¢ ,i

4 BandMSS 74.8%
3 BandKSS, ExcludlngMSS6 70.2%

SlmulatedMSS (gOm, 3 band, and
6 bits) from TM 69.1%

+,

I, l, t_
_!, ',.... _, ',,+_,'

Fig. 4. ThermalInfrared(TM6) of Laure1-Beltsville,MD Study Slte

Comparisonof both 6 and 7 band TM classifieddata indicatesa substantial
improvementover 4 band MSS data, Table 5. Previousresultsindicatethe
increasein accuracyma_ be attributedto spectralbands and quantizatlon
improvementsin TM and not Che higherTM spatialresolution. Further,when
deletlngband MSS 6, to obtain 3 band MSS data, the overallaccuracy,70.2%,
Is very slmilarto that obtainedwith the preprocessedTM data when slmulatlng
the MSS parameters,6g.1%. The similaraccuraciesindicatethe procedures
implementedto modlf_ the sensorparametersof the TM data were indicativeof
the MSS sensorparameters.->
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InformationAsses_mentthroughPrincipalCo_ponentTrar,sfgrmatJqn

Imagesof the four prlnclpa]component_to the 4_band July 29, 1982TM and
July 3, 1981MSS scene are given in Fig_. 5 and 6, respectiw_ly. The first

componentfor both TM andMSS is' F,r ex mp,nalogousto e. xcavatedor aresoilthee"brightnes_"bc°mp°nent_i"the TasselledCap Transformation. a 1 ite_
appearbright and vegetativesurfacesappeardark. In the secondprincipal
componentfor both TM and MSS re_ultsindicatebrightresponsefor green
vegetationand a darkertone for unvegatatedareas. However, in the third and
fourthprincipalcomponentssIgnificantlymore spectralcontrastor landcover
informationmay be observed in TM, Fig. 5, versusMSS, Fig. 6. The differen_e
in useful landcover informationis even thoughthe 4 band TM has spectral
informationin only one additionalspectralband, TMI (.45-.521Jm)(MSShas
MSS6, 0.6-0.7pm that is.,notrepresentedin TM). Further,the amountof
variationin the third and fourthcomponentsas indicatedby the eigen values
is approximatelyequivalent,Table 6. In Fig. 6, for MSS, there is predominantely
bandingnoise in the third and fourthprincipalcomponentsin comparisonto
the distinctboundariesbetweenland coverfeaturesobservablein Fig. 5 for
TM. Specfflcally,the TM third and fourthcomponentsdiscriminateresidential
neighborhoods,forest sites,water and agriculturefrom one another. The
added "useful"informationis likelya functionof the blue band, TMI and

! increasedspectralvariabilityfrom both quantizationand spatialresolution
of TM. Further,other TM improvementssuch as an improvedS/N may have increased
the "useful"spectralinformation.Table 6 also includesa set of tabular

, resultsfor the principalcomponentsfor the July MSS and TM data sets. Ofi
significantimportanceis that althoughthe TM bands have slightlyless
variationin the third and fourthprincipalcomponentsin comparisonto MSS
the overallaccuracyand transformeddivergenceis substantiallyhigher.
H:nce,the added variationin princlpalcomponentsthree and four of the MSS
is randomvariationfrom bandingand contributinglittle landcover discrimination
informationrelativeto TM.

N

Table 6

MSS and TM PrincipalComponentSummary

Overall
Overall Transformed

Principal Percent Classification Divergence
Components Variation Accurac__(__ (0-2000)

l 54.8 49.9 I198
2 43.9 50.I 879

MSS July 11 3 .8 21.7 634
1981 4 .5 30.3 816

1 through4 lOO.O 71.8 1793

l 62.7 55.0 1235
2 36.4 49.9 1072

TM July 29 3 .5 26.7 914
1982 4 .3 39.4 1003

l through4 I00.0 77.5 1894
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Fig. 5. July 29, 1982 LandsatTM 4 Band PrincipalComponents

Fig. 6. July 11, 1981Landsat MSS 4 Band PrincipalComponents
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Figs. I _nd 8 depicts the I band TM November 2, 1982 and 4 band MSS November
2, 1982 principal component transformeddata. Similar to the July findings
the first principal component is analagous to the "brightness"component in
the Tasseled Cap Transformation, However, in the second principal component,
the correspondencewith green vegetation reported for the July data is not
apparent. This is likely a result of foliage changes (i.e., leaf spectral
change and leaf loss) occurring in the November 2 data that is producing
different eigen vector loadings for the bands in comparison to the July data

, sets.

Of special interest is the increased land cover informationobserved in the
third through fifth principal component of the TM in comparison to the third
and fourth MSS principalcomponents. The MSS third and fourth principal
component are approximate in noise (and variation) to the sixth and seventh
principal component of TM. Hence, there are approximatelythree more
principal components of useful information in TM versus MSS. As reported for
the July TM and MSS data sets, this is a result of the improved sensor
parameters (i.e., spectral region, spatial resolution,quantization,detector
dwell time, etc.) of TM over MSS.

Table ?provides a summary of percent variation, classificationaccuracy and
transformeddivergence for the TM and MSS November 2 principal components. Of
special importance,however, is the increase in transformeddivergence and
classificationaccuracy in the third, fourth and fifth principal componentsof
the TM versus the third and fourth principal components of the MSS. The sixth
and seventh principal componentsprovide a similar level of land cover
discriminationinformationto the third and fourth MSS principal components,
as indicatedby the classificationaccuracy and transformeddivergence. Similar
to the findings in the July data analysis, the TM is providing additional
overall land cover discriminationinformationover the MSS.

Table l
TM and MSS Principal Component Summary for November

_ Overal1
OveralI Transformed

Principal Percent Classification Divergence
Components Variation Accuracy,%) (0-2qo0)

1 77.1 46.4 1122
2 19.8 41.5 869

MSS Nov. 2 3 2.1 24.6 251
1982 4 1.0 27.2 324

I through 4 I00.0 69.9 1624

I 70.9 57.I 1084
2 12.5 38.1 652

TM Nov, 2 3 8.8 43.2 790
1982 4 4.5 37.1 578

5 1.8 37.7 588
6 .5 26.3 287i

i 7 0.0 30.1 423
1 through 7 100.0 83.2 1912
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_:_._. Ftg. 7. November 2, 1982 Landsat 4 TM 1 Band Principal Components

_,:

Ftg, 8. November 2, 1982 Landsat MSS4 Band Principal Components
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SUMMARYAND CONCLUSIONS _
_d

Analysisof TM and MSS data providedseveralinterestingfindings. Preliminary
inspectionof TM in comparisonto MSS indicatesthe substantialamountoi
spectralinformationavailablefrom TM over MSS. Of immediateutilityis the
detail or spectralcontrastfor use in image interpetationof surfacefeatures.
For example,largebuildingsand streetpatternthat are resolvedin TM imagery
but not in MSS, shouldsignificantlyimproveimage interpretationaccuracy.
Resultsfrom the digitalanalysisof TM with referenceto MSS and/orMSS sensor
parametersclearlyindicatesthe added informationcontentin TM over MSS when
discriminatingsuburban/regionalcover. However,there are characteristicsof
MSS that will improveland cover discriminationover TM when using conventional
classificationprocedureson digitaldata.

Of the three improvedTM sensorparametersevaluated,spectralregion,spatial
resolution,and quantization,the additionalspectralregionsof the TM (TMI,
TM5, TM6 and TM7) clearlyadd useful informationwhen discriminatingthe land
cover classesfor this study. Duringthe November2 data in which there was
reducedspectralcontrastbetweenclassesdue to time of year, the increased8
bit quantizationof TM facilitatedthe discriminationof land cover. However,
the July 29 data set in which vegetationgrowthenhancedland cover spectral
separabilityresultsindicatedincreasedquantizationfrom 6 bit to 8 bit was
insignificant.Hence, improvedquantizationof TM is likelyvaluablein situt_tions
where there are spectralsimilaritiesbetweenclasses.

On the other side, the spatialresolutionincreasein TM decreasedlandcover
discriminationas a resultof increasedwithin class variability. The added
withinclass variabilityis subclassinformationor variationthat is creating
confusionor spectraloverlapbetweenclasses. Subcategorizingdata through
clusteringdid not improveresultsas expectedfor,the higherresolutionTM
data. Hence much of the variabilitywithin classesis likelyspectrally
similar,resultingin a poor land cover classification.Effectsfrom boundary
or mixed class pixels as a functionof spatialresolutionwas not evaluatedin
this study. Clearly,the proportionof mixed pixelsto the total pixels
decreaseswith the increasedspatialresolutionof the TM. Since mixed class
pixelsconfoundsclass discriminations,it is reasonableto assume improvedTM
spatialresolutionwill increaseclassificationperformance. Therefore,there i!
are two factorsadded within class variabilityand reducedboundaryor mixed
class pixelswor_ingagainstone another. The extentof each is a functionof
withinclass variabilityand class field size. Since these two factorsvary
from site to site and also with the level and type of classificationscheme,
resultsas a functionof spatialresolutionfrom variousinvestigatorswill
continueto be muddled. More likely,new patternrecognitionapproacheswill
have to be adaptedfor high resolutlondata such as TM that are techniqueand
site specificin order to more fully use the additionalspectral/spatial
information.

Spectralbands from each of the spectralregions--visible,near infrared,
middle infraredand thermalinfrared--allprovideuniqueand useful information.
In other words,for many generaldigitalTM evaluationsinclusionof four
bands representingthe four spectralregionswill typicallyprovideas much
useful land cover discriminationinformationas when using all seven bands.
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: Results from inclusionof the thermal band, TM6, indicatedan improvementin
spectral class discrimination. Of primary spectral importancewas
discriminationbetween water, vegetative surfaces, and impervioussurfaces due
to differences in thermal properties. The differences in thermal properties
are complex but are related to differences in the radiative,conductive, and
convectiveprocesses of the materials. Further, although the time of day is
not optimum for discriminationand the surface thermal properties change
rapidly as a function of time, the thermal infraredband is nonetheless a
random variable providing spectral contrasts between surfaces comprising land
use/landcover classes.

Results from the principal component transformeddata clearly indicates
additionalinformationcontent in TM over MSS. For both the July and November
data sets, the TM had two.and three additionalprincipal componentsof land
cover discriminationinformation,respectively,in comparison to MSS. The
added land cover informationin the TM is likely attributed to increased
spatial resolution,added spectral regions, and quantizationand possibly
ether TM sensor parameter improvementssuch as an increasedS/N. Last, by
deleting the final principal component(s),the principal component transformed
data may be used as a data reduction technique. For example, TM principal
componentssix and seven for November provided insufficientland cover
discriminationinformationto warrant inclusionof all seven principal
components in a classificationprocedure.
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COb_ARATIVE TECIINIQUES USED TO EVALUATE
THEb_TIC MAPPER DATA FOR LAND COVER

CLASSIFICATIO_I IN LOGAN COUNTY, WEST VIRGINIA

INTRODUCTION

The Eastern Regional Remote Sensing Appllcatlons Center (ERRSAC) of NASA/

Goddard Space Flight Center and Marshall University (W. Va.) conducted a
Joint evaluation of Landsat 4 Thematic Mapper (TM) data for mapping aban-

doned mine lands and reclamation progress in conjunction with the West

Virginia Department of Natural Resources (WVDNR). lhe co-investigators
proposed the research after being contacted by personnel from the WVDNR/
Abandoned Mine Lands dlvisionp who were interested in determJning whether

or not the improved spatial, spectral and radlometric resolution of the TM
could be used to detect and assess abandoned surface mines, and delineate

stages of revegetatlon. Thus, the objectives of the research were to

identify and map actlve/abandoned, partially reclaimed, and fully revege-

tared surface mine areas, testing several digital data process_n 8
techniques for this purpose.

Change_ in state and federal laws over the past decade have made the

monitoring of active and abandoned surface mines a necessity. In 1973,

legislative changes in surface mining and reclamation laws in West Virginia

mandated back-filling practices and the basic elimination of talus slopes
as well as some reduction in the vertical hlghwall structure in relation

to surface mine reclamatlon. By 1977, new federal leglslatlon wlth man-

datory state compliance required a reclam_tlon practice that restored

the orlglnal contour with elimination of highwall and talus slopes in
any form. Additional laws concerniDg reclamation of abandoned mine lands

were also established resulting in severance tax revenue from the extracted

coal being applied to reclaiming those areas that had not been properly
reclaimed prior to the Surface Mining and Reclamation Act of 1977, The

Logan County study area, with a large number of active and abandoned mines,

was an ideal location to apply and evaluate the TM data with these
considerations in mind.

PROCEDURES

All dlgital processing of the 4 September 1982 TM scene (path/row 18 34)

was accomplished on the Hewlett-Packard 5000 computer at ERRSAC, using

the Interactive Digital Image Manipulation System (IDIMS) software packa$e,

and accompanying Geographic Entry System (GES). The TMdata for the
central portion of Logan County were extracted to include most of the

barren and disturbed areas. This subset image also contained one of the

three U. S. Geological Survey (USGS) 7.5-mlnute topographic quadrangles
?or which ground verification data were obtained by WVDNR. These data

were first subjected to various enhancement procedures, including a
linear contrast stretch, principal components and canonical analysls trans-
formations. At the same time, four general procedures were followed to

produce six classifications as a means of comparing the techniques involved,
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The general proc_duro_ were as follows: _,

- analysis of the full _v_n-band TM data Aubnot;

prJnclpal compononts _maiysi_;

canonical analysis; and

- nna]ysls of four band_ selected by canonical analysis.

Th_ nix alasslfications all w_r_ generated using an Itora_ivo unmlporvln_d

clustering algorithm on tim seven bands, the four _c].ccted bands, three and
four principal components, and three and _our canonical axes. Each wan then

labelled with the aid of ground truth information, and dlgltally compared wSth
the OES-.encodedvorifieaulon data for accuracy assessment. The follow:Ins
section describes these procedures in greater detail.

Digitization of Ground Verification Data (GVD)

The GVD collected by the WVDNR/Abandoned Mine Lands Div. personnel for the

Holden 7.5' quad sheet was entered into the computer using the IDIMS' GES.
The GVD was dlgltlzed o_ a Tales digitizing table with the data stored as
polygons, in vector format. For the GVD to be used in parallel with the
classified TM data, two transformations were applied to the data first. Both
data sets had to contain the same picture element size, and the GVD had

to be converted from vector to raster format before entry as an IDIMS (computer)
image. A grid with specified origin and cell size was created, and the
two (GVD and TM) data sets were then transformed to fit this GES grid,
assuring that they were identical in areal extent. The vector to raster
format conversion was done with another GES program, and the GVD could
then be entered as an IDIMS image. Once cover_ed to image form, the GVD
was compared with the classified TM data by cross-tabulatlon (see ESL, 1978),

Image Enhancement

A linear contrast stretch based on histograms of the data for each of the
seven TM bands was done by saturating the data values from the two tails of

the modal distribution and stretching the modal range of data values from

0 to 255, thereby increasing contrast. The first three axes from principal
components analysis, a feature extraction technique, were used to develop a
transformed image of the TM data subset (Podwysockl, 1977). The principal
components transformation developed a grand mean by clustering all of the
data, with the first three (orthogonal) components itcared so as to account
for over 95% of the variance in the data. A second feature extraction techni-

que, canonical analysis, was used to generate a canonically transformed
data set. Again, the first three axes containing over 97% of the data

variability were used to develop a third enhanced image (Bloemer et al,_ 1981).
These three enhancement procedures were then compared for hlghllghted infor-
mation content and interpretability.

Iteratlve Clustering (Unsupervlsed) Classification

An iterative clustering algorithm (ISOCLS; see E.S.L,, 1978) was applied to

the full seven-band TM data subset with control parameters set for 30 clusters,
eight iterations, deviation of means at 0.5 and chaining distance of 1.0.

These settings resulted in very tight grouping of cl_sters (_.e., very well
defined relatlve to one another). The clusters were identified in terms of

Informatlonal categories such as urban, grass, forest, actlve/!nact_ve mines,
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partially reclaimed, fully rnv_gatatnd, cloud and shadow, th_n groupc_d and

lastly subjected to aeeurney assessment (se_ WiLt _t el., 1982).

Pr__Incl_alfi_n_nt_ Anal_sln Clnns£fleatlon(_

Stati_tles involving the grand means and eovarianee matrix for the seven band,

of TM data wer_ developed using an It_ratlvo elustcrlng algorithm, s_t: for
one cluster and a maximum standard deviation of 0.5 with one iteration. The

' resulting grand moans and eovarlanco matrix wore used to develop the trans_

formation coeff:teients, which were then multiplied times the raw sevon_band

TM data subset to develop the transformed data sot (principal components
axes). Most of the variability was loaded into the first throe axes (95%),

with an additional fo_r per cent in the fourth component. The first three
and four principal components were clustered into 30 classes and labelled as

above for accuracy assessment.

Canonical Analysis Classiflcatlon_

The iteratlve clusterlng algorithm (ISOCLS) was applled to develop statistics
for 60 clusters in the raw seven-band TM data subset. These statistics of

cluster means and covarlance matrices were input into a canonical analysis

routine developed by the Office for Remote Sensing of Earth Resources (ORSER)
at Pennsylvania State University, as modified and installed by ERRSAC at NASA/

Goddard Space Flight Center. Canonlcal analysis is used to develop coefflcients
of the transformation matrix using pooled within cluster and pooled among

cluster covariance matrices to bring about a rotation, translatlon and rescaling
of data in the transformation process (Merembeck, 1977). Matrix mult_pllcation

of t_e raw seven-band TM data subset by the transformation matrix was done
with another IDIMS function (KLTRANS), and the flrs_ three and four axes i

containing 97% and 99% of data variability (see Table I) were used in iterative I

clustering and accuracy assessment as aoove (Brumfleld, 1981; Boyd, 1982). !

Band Selectic-. by Canonlcal Analysis for Classification

Canonlcal analysis as described above also develops a correlation coefficient

matrix showing the correlatlon of the input data set and the canonlcally
transformed data axes. Based on visual inspection for feature definition and

variability loadings in the first four a_es_ the first three axes and their

correlatlons with the r_¢ data bands were used in band selectlon (Eppler, 1975)0
The criterion established was to evaluate the correlation coefficients for

each of the bands of raw data se that the sum of the absolute values of any

two of the first three axes was equal to or greater that I.i (see Table Ii).
For example:

equatloni ITCll+ IT=21-II
equatlon2 ITCll �ITc31- 1.1
equation 3 ITC21+ ITC31 = 1.1

i where TCI, TC2, TC3 are the correlation coefficients in transformations i, 2, 3,

for TM data bands one through seven. The only bands to meet this criterion

were bands 3, 4, 5, 7 which were thereby selected for clustering as in the
above procedures (Turner et al., 1978).
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Aecurac_ Assessment

All six 30_eluster classifications were thu_ labelleA and the cla_sen grouped

into on_ of th_ dc_Ircd cat_gorles (urbanm grass, fere_t, and mines) to correspond
with the GVD. The accuracy assessment consisted of digitally comparing each of the

nix elasnlflcatlonn wlth th_ OVD on a polar-by-polar basis by means of an

IDIMS program (CONTABLE), which produced contingency tables indicating the

level of agreement between the significant categorlea. All percentage

figures in the following tables were derived from rhone matrlcca.

RESULTS

Visual Analysis of Enhanced Imagery

The images resulting from linear contrast stretching, principal components

and canonical analysis transformations of the raw TM data clearly offer a

high quality product for interpretability of actlve/abandoned surface mine

areas. For example, the first three canonical axes all contain information !pertaining to the mines. The first axis is positively correlated with active

and abandoned surface mine areas, while the second and third axes show a
negative relationship. When displayed in the form of a color composite, the I
transformed data se_s allow interpretation of active and abandoned mines,

even along narrow hillside contours or, steep slopes. The tailing piles
associated with underground m_ne sites are also easily visible. The fact

that all of these mine features are quire apparent suggests that Abandoned il
Mine Lands personnel could use manual methods to locate active/abandoned ii
mines, at least to update maps of the total extent of such areas. Further

identification of stages of surface mining could then take place using machine I

processing methods. !

Digital Analyses (Statistical) Results Ii

The results of the various techniques are summarized in the following tables.

Table III shows the number of plxels and the per cent correct for six
classifications and the four general categories. Table IV presents a more

comprehensive version of the accuracy assessment.-results_ taking into account
both commission errors and omission er_-ors. The percentages for all classlfi-

cations/categories represent an average of pixels correctly classlfled over

row, and over column, totals.

The clustered, four-axis canonically transformed data set gave the best overall
accuracy at 84.9% correct, followed by the three-axls canonlcal and band

selected classifications at 83.3% correct. The seven bands clustered image

had a slightly lower accuracy of 83.1% correct, while the poorest overall results

were given by clustering four (81.8%) and three (81.1%)principal components.

For active mines, the category of greatest interest, Table IV illustrates that
the two classificatlons of canonlcally transformed data had virtually the same

accuracy as the seven-band clusterlng, 35.4% and 35.3% respectlvely. The

band-selected classlflcatlon was sllghtly lower at 33% correct, and the

principal components images did the poorest (30.5% and 27.2%) in classifying

actlvely mined areas.

--'r
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The low absolute paraontagaa for aatagorian othar than rarest ara due to tha
g_nRrali_ed natur_ of the ground v_rifiaation data. For _xample, th_

arran dolineatod on the Holden quadrangln by WVDNR an active mlnan w_ro Inn_ad

tho full extent of arran currently lleonned for mining. Most of th_o arena

hav_ not h_n R_po_d to mln_ o_orationa in their _ntlr_1:y, and thu_ ar_

e_.rroet]y alaa,ifi_d a_ forest, the pra_mln_n_ ].and never.

In roallty, cash mlno i_ worked a portion at a _Im_, _o that within one pormlttod

area s_voral ata_o_ of minln_ or no mining at all may oxia_. Actual ],and eowrs
' within the bonded areas include forest, grass nnd scrub (fore,oration), _d

barren land. In order to p_ovldo be_tor results and a mo_e roalln_Ic compnrlnon

between the ela_sifleatlons, a true f/old survey of the minas will be done

to provide ground _ruth information that d_linea_os activo/inac_tvo, partially
reclalmcd, and fully revesetatod mlno areas.

CONCLUSIONS

It is apparent from these preliminary r_salts that various featur_ ext_actlon/

data reduction techniques provide clansification results equ_l Or suporlor
to the more straightforward unsupervised clustering technlquo. AIBo, as i
Figures I and II for three principal components and three =anonlcal a_es

illustrates, the overall separability of classes offers greater information
content relative to a variety of land cover categories than the more g_nerallzed

ground verification data indicate. The data transformations _hat are involved

initially take slightly more computer (c_u) time, but once developed using

a representative subset of the data, they can be applied to the larger data
set. Furthermore, analyst interaction time fo_ labelling clusters is reduced

using the canonical analysis and prlnclpal components procedures, though the I
canonical technique has clearly produced batter results to date. Once the !

ground truth d_ta are revised, it will be possible to offer a more detailed

assessment of the TM data as used for mapping surface mines.
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TABLE I

Percent Variance Loading for Canonical Analysia

Axis I 2 3 4 5 6 7
variance

Percent 53.73 32.41 10.08 3.24 0.38 O.ii 0,05
of total





TABLE III

C ,ILAS_IFICATION RESULTS BY LAND COVER

CATEGORY (PIXELS AND PERCENT CORRECT)

Land Cover Cat_orlns

Urban Grass Forest Mines totals

; 7-band 1055 711 119186 1382 122334

28.9 8.6 89.6 6].i 83.1%

4-band 1675 319 119305 1290 1_2_89

r 27.5 7.6 88.6 56.9 83.3%

PC I 1245 825 115376 2010 119456

:' 32.5 8.0 90.0 40.4 81.1%

- PC II 1684 797 115880 2179 120540

::_ 38.3 8.7 89.8 45.7 83.3%

_ FJ_ I 2202 629 117746 2371 122948

'_ 40.7 9.0 89.9 54.1 83.3%

'_-:, KL II 2197 377 120615 2382 125571

_:_-: 41.2 10.9 89.5 54.0 84.9%

_, Average 34.9% 8.8% 89.6% 52.0% 82.9%

" T_BLE IV: AVERAGED ACCURACIES

_ Land Cover CateEorles

: Classification

Urban Grass Forest Mines Overall

-_" 7-band 23.4 18.4 92.7 35.3 83.1%

4-band 27.9 i0. i 92.3 33.0 83.3%T.

• PC I 26.8 20.1 91.3 27.2 81.1%

PC II 33.4 19.9 91.4 30.5 81.8%

KL I 39.0 16.8 92.1 35.4 83.3%

KL II 39.2 12.8 93.0 35.4 84.9%

i Average 31.6 16.4 92. i 32.8 82.9%
/.J

ii
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LANDCOVER CLASSIFICATION IN THE CHESAPEAKE BAY AREA
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ABSTRACT

In a cooperative program with the U.S. Army Cor[s of Engineers,
NASA is evaluating the capabilities of Landsat Multlspectral

Scanner (MSS) and Thematic Mapper (TM) data for environmental

and hydrologic applications. As part of this program_ an

area bordering the Eastern Shore of the Chesapeake Bay was

selected for study and classified using unsupervised techniques
applied to Landsat-2 MSS data and several band combinations of
Landsat-4 TM data. The accuracies of these Level I land cover

classifications were verified using the Taylor's Island USGS

7.5 minute topographic map which was photointerpreted, digitized
and rasterized. This site had been randomly selected, and

was primarily covered with water, woodland and wetland. A !,

plxel-by-pixel comparison was performed between the resulting

ground verification image and the unsupervised classification

images. The improvement in classification accuracy due to
the increased spatial resolution of TMwas evaluated by com-

paring a classification based on MSS data with those from
the three TMbands (2, 3, and 4) most comparable to the MSS.

An increase in classification accuracy of 8-12% was noted in

those land cover categories which occupied less extensive areas

of ground. In order to investigate the contribution of TM

spectral characteristics to classification accuracyD compari-
sons were made between classifications developed from TM

bands 2, 3, and 4_ and other selected TM band combinations.
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INTRODUCTION

As part of its cooperative program with the U.S. Army Corps of Engineers,

NASA is assessing the most cost-effectlve and informative uses for
Landsat data in environmental and hydrologic applications. In particu-

lar, MSS and TM data were examined to identify the relative contributions

of each instrumentls spatial and spectral characteristics to land cover

classification accuracy. Of speclal interest in the Chesapeake Bay area

are wetland mapping and change detection, and turbidity assessment for
harbor maintenance.

Site Description

The Chesapeake Bay is a large (200 mile long) brackish estuary linking
Baltimore Harbor with the Atlantlc Ocean. Past dredging has allowed

larger ships to use this channel while current maintenance keeps the
passage open for co-,nerce. Like the Bay Itself, the wetland areas on

its Eastern Shore support both a thriving fishing industry and recrea-
tional activities. In addition, some of the surrounding wetlands

include wildllfe preserves and ma_or winter feeding grounds for large

numbers of migratory birds (Maryland Chesapeake Bay Fisheries, Bundy.

N. M., 1978). 1 Addltlonal Infor_tlon on wetland vegetation, submerged

aquatic re@station, turbidity, sediment transport and general land
cover would aid the Baltimore Corps District in its program planning
efforts.

Data Acquisition

Data sources for this project included the following: a Landsat MSS

scene acquired October 31, 1980, and a Landsat TM scene acquired
November 2, 1982. Color infrared aerlal photography taken October 13,

1981 was used for photointerpretation of ground cover. The digitized
Level I land cover data used for ground verification was developed

from photolnterpretation of 1977 color infrared photography of the

Taylor's Island area flown by the State of Maryland,

Ssatial Eegistratlon

The Landsat MSS and TM data covering this study site were spatlally

registered to a digitized ground verification map using ground control

points. Control points common to all data sets and uniformly distri-

buted throughout the study area were recorded and marked on a USGS 7.5

minute topographic map. The control points were digitized from the map
using a digitizing table. To produce an image data base representative
of the Universal Transverse Mercator (UTM) projection, the digitized

coordinates were rescaled to image coordinates representing 30-meter

square pixels for TM data and 60-meter square plxels for MSS.

Two thlrd-order polynomlnal equations were used to model (in a least

squares fit) the relationshlp between image coordinates and the trans-
formed UTM coordinates. Control points with large residuals were
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iCeratlvely deleted until the f£-a[ residuals ranged from 0 to + 1.6
plxals. T! _HSS and TM data were then resampled uains nearest neiBhbor
Interpolation to 60 and 3(, meter projections, respectively.

_and Selectlon

Using a transformed divergence test to measure atatlstical separability
between class pairs, Gervin et al (1983) identified 1_4bands 3, 4, 5

and thermal,2as a partlcularly pro_tslns hand coNblnatlon at another
' study site. A combination of TH bands- 2, 3 and 4, (comparable to the

bands of C_.e MSS) was also exa_tned to test the improvement provided by
THspatlal resolution.

Land Cover Classification Procedure h

The same classification procedures were followed with both the MSS and TM
data sets. Training statistics were generated on a mosaicked image of
eight subsections _epresentative of ground cover types in the entire
Chesapeake Bay a_ea. A clustering algorit_nwhichdivided each data set
(for each band combination) into spaotrallyhomogeneous clusters was

- applied to this mosaicked image to produce the training statistics.

.... A second mosaicked image containing two large subsections of land showing

an agr±culcural and a wetland area typical of the test site was then
_ classified based on training statistics from the eight-part mosaics using

a maximmn likelihood algor]c_n. Each cluster was individually displayed
on an interactive video display device and manually assigned a land cover
type based on topographic maps, aerial photographs and t_o-band spectral
plots of the cluster means.

Approximately 60 spectral clusters were o_tained for each band combina-
tion for the Eastern Shore sites. These clusters then were assigned to
the five land cover categories. The Taylor*s Island test site was then
classified in the above manner, and its categorized images ware registered
to the ground verification data for accuracy assessment. The categories
identified for the purpose of accuracy assessment were water, wetland,
agriculture, forest and developed/res£dential. The majority of the
area covered by the USGS topographicmsp wee in water or woodland.

RESULTS AND DISCUSSION

For the Taylor's Island map, comparing CheMSS and TM three band (2 3 4)
classifications, the increased resolution of TM produced a small
improvement in overall accuracy of 1_ correct due primarily t¢ a small
improvement, 1_ and 3_, in area_ such as water and woodland (Table 1).
This was expected as the MSS data typically produce high accuracies for
categories which cover large contiguous areas. However, in the categorisers
covering smaller areas within the map there was generally an improvement
of at least 10_. Classification of the important residential category

improved 12%, and wetlands were mapped with 11% greater accuracy.
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Accuracy decreased 8_ in asriculture, possibly due to the discrepancy in I
the ground verification data which had been acquired three years prior
to the TMdata.

When the classification was expanded to include four TMbauds (3 4 5 and
thermal) and then to all seven bands, little or no improvement occurred
in the water and woodland catesories but larser _nprovements were
observed in the other catesories. The four hand showed improved
discrimination for asriculture over the three band combination, but showed
less discrimination in the residential areas, sussesCtng that a trade-off
had occurred. . ......

Classification usin8 the TH four bands was nearly as accurate as that of
the seven band combustion in several catesoriee and in overall accuracy.
The seven band combination produced much better results in the residen-

tial categoryp however. The combined benefits of increased spatial and
spectral resolution of the THseven band combination yielded sreater
accuracies than tLqS in all oatesories.

These prelZmtnary findinss indicate that improvement in classification
accuracy can be traced Co both the improved spectral and spatial resolu-
tion of TH. These results will be verified usin$ two additional randomly

selected USGS maps, which are primarily a$ricultural and forested.
Additional THband combinationswill also be applied to these maps. De-
tailed observation of wetlands and possibly (dependin8 on data availability)

multitemporal classification will also be attempted.

LANDCOVERCATEGORIE8(PERCENTCORRECT)

AGRICUL- WOOD- RE81DEN- OVERALLBAND . WATER WETLAND TURE/
COMBINATION8 GRAB8 LAND TIAL

M88 116 42 E2 7:1 14 81

TM
BAND82, 3, 4 N E3 44 78 S 82

BAND83, 4, E, i it7 66 El 7El 11 14

ALLBAND8 117 E1 64 _ 33 04

PERCENTCOVER ll0 14 II 18 0.2 100

Table 1. Taylors Island Hap Accuracy Assessment
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COMPARISON OF LAND COVER INFORMATION FROM LANDSAT MULTIBPECTRAL
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INTRODUCTION

la a cooperative program with the US Army Corps of Engineers (Corps), NASA is
evaluating the capabilities of Landsat-4 Thematic Mapper (TM) data for environ-

mental and hydrologic applications. The spectral and spatial characteristics
of the TM considerably exceed those of the MSS carried by all Landsat satel-
lites (Table I), but the complexity and cost of analyzing TM data may make

MSS data an attractive alternative for certain applications. Both NASA and

the Corps are interested in assessing the relative effectiveness of TM, MSS

and conventional data for land cover classification, particularly in urban/
suburban areas, and for developing parameters for input to hydrologic (flood

forecasting) and economic (flood damage) models (Davis, 1979). In addition,
it would be particularly desirable to establish a set of optimal TM band combi-

nations for land cover classification and related data analysis which could

reduce processing time and cost while praserving accuracy and reliability.

Several sites already under study by the Corps were selected for this program.

This paper will report results for one of these sites, the Clinton River Basin
in Michigan. Moreover, the data examined here were gathered by the TMS, an

airborne sensor designed to simulate TM spatial and spectral resolution prior
to launch.

SITE DESCRIPTION

The Clinton River Basin flows into Lake St. Clair, draining an area of approxl-

matcly 760 square miles in southeastern Michigan just north of Detroit. A

detailed description of its topography, geology and climate may be found in

Revised Plan of Study, ClintoN_ River Basin (Corps, 1980). The basin has

experienced an increasing number of floods in recent years accompanied by
rapid growth and development, particularly within the floodplain. For these

reasons, the Corps has developed and revised a plan for flood control



°

measures. The Detroit Di_Lriet ha_ aatahlinhad a data ba_e and cou_pr_dlenn:Lve

water_hed model u_ing _patial one.lydia laathodn (SAM) d_elupf_d by thr,flt)Tpr_
Hydrologle Engineerln8 Canter (Davis, 1980) as a baslnwlde mn,,a_t_inoll|'|zeal
to flatisfy a wide ranks of plannlnR needs,

APPROACII

Detailed ].and cover c]nssifl.cat_ons wore performc_d on THS and MSS dal:a of th,_

Clinton River Basin using m_pervtfl_d elann!fl+_at_.on I_echniqnr_. D+l.ff_r+_nccts
in lnt_rclas, saparabll:l, ty war_ _ompar,_d to select smv_ra!, proml_tnE TM_; band
combinatl.onn. Supervised cla_sifteationn for those bold comh:Lnat,l.,3n_ wr_r_
comp_eted for _hroe llSGeological Survey (USG_) topographic map_, Mr. (:]_,i,_nI;
West, Utica and Waldenburg. MSS and TMS land cover Informati,_n for the basin

derived from these classifications will be provided to tileCorps for ttlJe_n
flood forecasting and damage calculation models to evaluate dlff_rence_ In

model performance, particularly in terms of accuracy and sensitivity.

Data Acquisition

Relatively cloud-free, high quality Landsat MSS data from early su._,or
(June 28, 1981) were obtained for the study site. TMS data were acquired

by NASA on August 19, 1981, in a single 60-mile long flight llne stretching
from the mouth of the Clinton River at Lake St. Clair through the to_ of

Pontiac to Ortonville. These data at a spatial resolution of 31 meters were

cloud-free and of good to excellent quality in most bands. Color infrared

aerial photography was floxw, simultaneously with the TMS aboard the NASA
Earth Resources Laboratory's Lear Jet for use in visual interpretation.

Three photointerpreted USGS 7.5 minute (1:24,000 scale) topographic maps,
selected from the 27 covering the Clinton River Basin, were used in verifi-

cation and accuracy assessment of th_ classifications. Prepared by the

Southeast Michigan Council of Governments (SEMCOG) using 1978 aerial photogra-

phy, conventional land cover maps at a scale of 1:24,000 for Mr. Clemens West,
Utica and Waldenburg were digitized and converted to raster images for

comparison with TMS and MSS classifications.

P;eprocesslng and Sata__a__ReKistratlon

Preproeessin_. The Landsat MSS data were reformatted to remove Earth-
rotational skew and synthetic pixels. Then the data were computer enhanced

to facilitate the selection of ground control points and training areas.

NASA's Goddard Institute for Space Studies (GISS) radlometrlcally corrected

the TMS data for changes in illumination across the scan llne and resampled

along each scan line to correct for the aircraft scanner's variable viewing
angle. The 31-meter TMS thermal band was degraded to 124 meters by simple

averagln_ to simulate the spatial resolution of the Landsat-4 TM thermal

band. No weights were used in the averaging process, as would be required
to simulate the sensor point spread function resulting _rom the optical

properties of the scanner system (Sadowskl and Sarllo, 1976). No attempt

was made to simulate the thermal sensor signal-to-nolse raclo that would

characterize lower spatial resolution data or the distortion introduced by

the forward and reverse scanning of the TM. This image was then expanded

back to 31-meter pixels, where each block of 16 plxels had the same value,

and merged with the _ther six bands of 31-meter spectral data.
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The other TMS band_: had much lower dynamic ranges than are expected from the
actual TM hands (NASA, 1982). Tahlo 2 prt:m_ntn the moans and varlnncon of
all bands. Since variance can I_ ro]atod to th_ nignal-to_noi_ ratio, TMf_

bands l, 5 and 6 had the low_t r_,lativi_nol_ af_ eonfirm¢;d by virtual [_xami_

nation. TM data aro axpncttad to provldo a full radlomatrlc rnugn of 256
lo, vol_ compnr_d with as few a_ 54 ].o,VO]_ from TM,q (BnDd 6).

.Spatlal ReB:tg.trg__.on .. The TMS and 'Landnat MSII data t,ov.rlng the ,tudy arna_
wer_ .p,;Itial, ly roginterf_tl 'to _ha digital ground w_rlfieat]on map. utl:l.ng ground
control point.. S:l._ty control points common to 'bath t,ol:t_ and u.:l.fortaly dis_
tribut_d througl'tonl', thfl .tudy area w_r_ recorded sad marked ,.m lISt,S 7.5 m:l,nute
tOl)Ographie maptJ. Ground control pol.ntn were (ligiti_,c_d from the map u,r.l.ng a
digtt£zing table. To produce an 'J.ntage data bane repr,mentat;ive of the IITM
project:ion, the dtgl, tint_d eoordtnatet_ w_re reucalt_d to _mage eoordinaee_ repre-
senting 30-meter square pixola for This data and 60-meter ttquar_ pixclt_ for hiSS
data. Two third-order polynomial equations wcrt_ utlt_d to model (in a lctmt
squares fit) the relationship bt_tween imago coordinates and the tranuformod UTH
coordinates. Control points wi':h large residuals were Iteratlvely deleted unt_l

the final residuals ranged from 0 to +i.6 plxels. The MSS and TMS data we_'e
resampled using nearest nolghbor fnterpolatlon to 30- and 60-meter resolution.

When the rogistratlon of the MSS and TMS data to the digital ground truth was

chocked on a display device, portions of the TMS data wet'e found to be more
than a pixel off, indicating that the third order polynomial u_ed was not
adequate to produce precise registration of the entire flight llne. Since

satellite platforms are more stable, actual TM data should not present as

much of a misregistration problem.

Supervised Classifications

Forty training sites were initially located in the TMS data using ground
survey data provided by the Corps Detroit District Office and simultaneous

color infrared aerial photography acquired by NASA. Statistics were generated
for each site and saved in a special statistics file which could be easily

edited. These sites represented the following land use categories used by
the Detroit Distrlct:

i. Low-, medium-, and high-denslty residential I:i

2. l_stitutlonal, kndustrlal, and commercial

3. Act i-e cropland

4. Wood land

5. Extractive and barren

6. Brushland

7. Grassland

8. Wooded wet land

9. Open wetland
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lO. Wat e.r

A maximum likelihood algorithm wan used to classify the. whoh_ 'J'M5 ,.lal _ _._I:

based on atnti.stien from 40 training sites. This clasnif:l.c.nt:l.o_t l,aaff,_, w_sn
thresholded using a ehi square confidence of 99 pc, roe.it l:n form _t .c,c.oml
classification image. Both ,'laa.tfJ, cation imago, n, the thrt_,nho.ld(,d n.d
unthresholded, were, displayed on an interactive dil_p].ay day:It,,, 'l'(_n c,)].,n._
were assigned to the classes to re, present the land use eategort._m ] I_,l,(_] ah,)_n.
By flagging the same class in each image plane a_d fliekorin_,, betwt_en th,, Iw, J
classlfied Images, it wan possiblt_ to determine which elammn neodt,d to b(,
thresholded or further rnflncd. Major errors of omim_lon and eommtm_lon w_r,

found :l.nthe grassland, agricultural, and brushland categorlL._1, Moreover:,
much of the TMS scene, remained unclassified at the 99 percent eonf:l.dence .It;vel.

Additional training aires were located it, the _mage to minimize the1_e errors,
bringing the total number of training sites to 67. Once the entli:e TMR scene

was classified, the same statistics were used to classify the regi,_Lered TMS

data for the Mr. Clemens West, Utica and Waldenburg maps using the maximum
likelihood algorithm.

". The same 67 training site statistics were also used to classify several data

sets using other TMS band combinations. The first was composed of TMS

Bands 2, 3 and 4, making it spectrally similar to MSS but with greater spatial

discrimination. Transformed divergence, which measures the statistical sepa-
rability between each class pair for all band combinations, was applied to
the first 40 training sites to select optimal TMS b..nd combinations from the

127 possible permutations. An optimal band selection would reduce processing
time while preserving most of the information content in the scene. The trans-

formed divergence test identified Bands 3, 4 and 7 and 3, 4, 5 and 7 as the

optimum 3 and 4 band combinations, respectively. These three TMS data sets,
composed of Bands 2, 3 and 4; 3, 4 and 7; and 3, 4, 5 and 7 were then classified

using 67 training site statistics and a maximum likelihood algorithm.

The classifications were cross-tabulated with the digital ground truth. Using

a simple plurality decision rule, each training site signature was relabeled

based upon the most predominant land cover present. Using this method, dis-

crepancies were quickly found between the category determined by the plurality
rule and the land cover within the original training site. The majority of

confusion was between grassland (both natural and planned, such as idleland,
golf courses and parks) and agricultural areas. Using the plurality decision

rule, the 67 classes developed from the training site stati_tlcs were assigned
to one of ten categories, water, cropland, woodland, wooded wetland, open

wetland, brush, grassland, commerclal/Industrlal, residential, and extractive.

The MSS image w _,classified in a similar manner using 73 different training

classes. Because of the difference in resolution between MSS and TMS data,
TMS training sites were generally too small (i.e., had too few plxels) to use
in classifying the MSS data.

Accuracy Assessment

For the accuracy assessment, the ten land cover categories were aggregated
into five because no open wetland and very little brushland or wooded wetland

were present in these study areas. Brushland, wooded wetland and wood]and

were therefore combined into a single woodland category.
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I

Grassland conslnt_d of I) golf courses and parks, which wore easily soparnblo, ii
2) Idlo]nnd which merged with brushland, and 3) many fioldn apparently planted
In hay or other grains on a multipla-yaar.rotation nehmdul_. Tharofore, it

wan Imponnlblo to d_terminn, using 1981 aerial photography, whieh crop had

occupied n g:lw_n f1_dd in 1978 when the ground verification data ware gathered.

Th_rofore, ngrleulture wan oomblnod with flrasnland for th¢_purponns of tho

ac_mraey ansc_n_Iment. F:Innlly, nlne_ th_ _xtractlve/barr_n category included
many eonntruetlon nil:ca in 1978 which by 1981 represented other land cover

typ_n, thln category was removed from analynls. The resulting land cover
eato_orlon worn: rnnldentinl, commoreinl/induatrial, woodland, agrleultur_/
grns_ m_d wat_r.

The throe USGS maps used in the accuracy assessment Included the primarily
re_idant:l.n]Mr. Clt;mens West map, the agricultural Waldenburg map and the
Utica map, which represents a variety of land cover types. The watershed

contains many small heterogeneous land cover areas, including industrial
plants, colmmerclal buildings along ma_or roadways, small ponds, isolated

residential developments, golf courses, narrow woodlands along streams and

small agricultural fields. A pixel-by-pixel comparison was performed between

the digitized ground truth maps of Mr. Clemens West, Utica and Waldenburg and
': each corresponding Landsat MSS and TMS classification map.

RESULTS AND DISCUSSION ]

IThe resulting accuracy comparisons, in terms of percent of pixels correctly
identified in each land cover category on the ground verification data, are

given In Tables 3, 4 and 5 for the Mr. Clemens West, Utica and Waldenburg maps,

respectively. Table 6 summarizes the information for percent correctly elassi-
: fled by land cover category and MSS and TMS band combination for all three

maps. The bottom row on each table indicates the percent of each map occupied

by each of the land cover types examined, based on the ground verification data.

The overall accuracJes for the land cover classifications of the Clinton River

Basin are somewhat lower than those often reported in the literature. This

can be attributed to the heterogeneity of this largely suburban area, the

rigorous accuracy assessment applied, inconsistencies in the ground v_rifica-

tlon data, due in part to the passage of time between the photointerpretation ,.
and TMS data acquisition, and the sepsration of developed into commercial/
industrial and residential.

Although these accuracy figures could probably be improved through revised

ground verification data or the use of multltemporal data, contextual classi-
fication, or other more advanced digital techniques, this might obscure the

results of greatest interest: a comparison of the per point accuracy of
land cover classification results between MSS and TMS and between various
TMS band combinations.

For all three maps, the spectral band combination con_arable to the MSS

(Bands 2, 3 and 4) produced an overall accuracy of 57 percent, an increase
of 9 percent over the MSS. The optimum 3-band combination selected by the

transformed dlw_rgence technique provided similar results. This is largely

attrlb,ttablo to the substantially (approximately 20 pet cent) higher accu-
facies For restdentlal, water and agriculture/grass
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Tho solocted 4-band combination provided nearly as good a discrimination of land
cover as all seven TMS bands. The 4- and 7-band classifications did show con-

sidcrahle improvement in accuracy over the 3-hand eombinatlons (63 percent versus
. 57 and 56 percent), particularly in residential (80 and 83 percent versus 72 and

69 percent) and agriculture/grass (64 and 61 percent versus 58 and 55 percent).

The observation that using 7 bands instead of 4 bands did not improve the classl-

flcatlon accuracy noticeably is supported by previous theoretical results of
pattern-classifler systems. Swain and Davis (1978) suggest that for a fixed

number of training samples there is an optimal number of spectral bands or

brightness levels per band. Increasing the number of spectral bands results
in a higher and higher dimensional set of statistics to be estimated with a

fixed number of samples. Theoretically, increasing the dlmenslonality requires

more training samples to characterize the added variability, but with a fixed

sample, classification accuracy can actually decrease. In this case, the most
optlmal combination of features contained four bands, with each band from a

major region of the spectrum: vlsible, near Infcared, middle infrared, and
thermal infrared.

CONCLUSIONS

TMS data produced a more accurate and spatially contiguous classification than i

MSS for this study site. While the accuracy of the 4-band TMS data set was as
good as the 7-band, the 3-band TMS data sets were also better than the MSS.

This confirms preliminary findings reported for the Mr% Clemens West map in
Gervln et al. (1982). These results indicate that both the increased spectral

discrimination and spatial resolution contribute to improved classification
accuracy. The posslbillty of reducing the data analysis burden associated with

large TM data volumes through effective band selection therefore appears
promising.

The combination of bands selected based on the trm,sformed divergence tech-
nique provided one band in each of the major regions of the spectrum: visible

(Band 3), near IR (Band 4), middle IR (Band 5) and thermal IR (Band 7). This

selection agrees reasonably well with results obtained by Dottavio and

Williams (1982) using linear dlscrlmlnant analysls and Larry and Hoffer (1982)
using divergence measures for forest types. This would be expected in light
of the intercorrelation studies of Staenz et al. (1980). Additional related

studies are summarized in Irons (1982).

These results should be viewed with some caution, however. The data are from

a TMS rather than the actual TM. Moreover, the MSS data were obtained in

early summer while the TMS was flown in late summer; therefore some of the
differences noted could be due to seasonal, atmospheric and sun angle effects
rather than sensor differences.

The implications of the improved classification accuracy of TMS data are impor-

tant for Corps hydrologic and economic modeling. In particular, the higher

accuracies for the developed categories (residential and commercial) should

improve the predictions of runoff in flood forecasting models and of flood

damage for damage calculation models appreciably, Moreover, the promising
results with band selection will permit users of the data to benefit from the

improved classification capability without having to deal with the entire data
vo]ume.
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Table 1 _

TM AND MSS SENSOR CHARACTERISTICS

TM MSS

Spectral Bands (_m) 0.45-0.52

0.52-0.60 0.5-0.6
0.63-0.69 0.6-0.7 '

0.76-0.90 0.7-0.8
1.55-1.75 0.8-1.1
2.08-2.35
10.4_12.50

Spatial Resolution (m) 30 80
120 (thermal)

Radlometrlc Resolution (bits) 8 6

Table 2
o!

SUMMARY STATISTICS FOR TMS FLIGHT LINE OF CLINTON RIVER, MICHIGAN

Date: 8/19/81 Time: 9:59 a.m. Local Time

Band Minimum Maximum Mean Standard Deviation

1 31 255 56 10

2 43 255 81 18
3 2 255 72 25

4 2 234 103 19
5 0 148 49 I0

6 0 185 29 9

7 0 255 I01 30

Note: The thermal band on the Thematic Mapper is Band 6, not Band 7 as on
the Thematic Mapper Simulator. .

Table 3. Mr. Clemens West Classification Accuracy Assessment

PERCENT CORRECT
I

Sensor Water Agriculture Commercial/ Reaidential i Totalend Grass Woodland Industrial
!

MSS 23 35 El 49 71 64

1riMs

(2, 3, 4) 28 El 42 48 ?5 I1
(3, 4, 7) 30 66 47 48 El El

(3, 4, §, 7) 32 84 47 52 11 III

All Bands 33 80 46 61 M N

Perctmt Cover 1 35 | I 11 41
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• i
PERCENT CORRECT '*

" Sensor Water Agriculture Woodland Commercial/ Residential Total, and Grass Industrial

MSS 22 66 51 36 36 I 47

: TMS

(2, 3, 4) 4S 62 41 64 63 51

(3, 4, 7) 46 46 46 60 m 61

(3, 4, §, 7) 46 60 46 58 78 58

All Bands 47 57 47 61 78 58

Percent Cover 3 35 30 10 22

Table 4. Utica Classification Accuracy Assessment

PERCENT CORRECT

*v, Sensor Water Agriculture Woodland Commercial/ Residential Total:- and Grass Industrial

;: _ MSS 0 38 33 26 66 41

, TMS

/. (2, 3, 4) 18 63 21 35 81 58
:_* (3, 4, 7) 8 62 23 41 78 51

(3, 4, 5, 7) 13 58 21 38 80 64

All Bands 18 65 22 35 82 62

Percent Cover .1 73 12 1 14
.-

Table 5. Naldenburg Classification Accuracy Assessment ..

PERCENT CORRECT

Sensor Water Agriculture Woodland ! Commercial/ Residential Total
._ and Grass : Industriali

MSS 19 43 58 I 41 58 48

TMS j
(2, 3, 4) 42 68 38 i 48 72 57

(3, 4, 7) 42 65 42 : 4,9 58 58

(3, 4, E, 7) 45 64 41 ! 50 80 63

All Bands 44 61 43 61 63 63I

I

Percent Cover 1 45 18 8 28

Table 6. Classification Accuracy Su_a_" for ._t. Clemens Nest, tTtica, and
•: Waldenburg
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RELATIVE ACCURACY ASSESSMENT OF LANDSAT-4 MSS AND TM DATA

FOR LEVEL I LAND COVER INVENTORY

ABSTRACT

A study was undertaken to compare digital data for the Washington, DC scene

from the Landsat-4 Multispectral Scanner (MSS) and the Landsat-4 Thematic

Mapper (TM), simultaneously acquired on Novemb6r 2, 1982 (Scone IDs: 40109-
15140). Classification success for the TM and MSS data sets was determined

by a per pixel comparison with digitized ground verification data (GVD).

These GVD were comprised of Level I land cover (developed, agriculture, forest,

water, wetlands, and barren) for four USGS 7.5-minute topographic quadrangle
maps. The relative improvement in classification success for TMwas between

Ii and 14%, or about a factor of 1.3, for these data. This represents a

meaningful improvement in accuracy for Level I land cover categorization for
TM relative to MSS, particularly when both errors of omission and commission
were considered.

i. INTRODUCTION

!#_ Due to improved radiometric, spectral and spatial characteristics, the Landsat-4

i Thematic Mapper (TM) is expected to provide considerable enhancement over

_ its companion, the Multispectral Scanner (MSS), in the capacity to discriminate
among and correctly designate ]_nd cover categories. Quantification of this

capability is essential to determine its utility for practical inventorial
applications as well as for basic research relating to terrestrial systems.

Prior to the launch of Landsat-4, extensive research had been performed with

Thematic Mapper Simulator (TMS) data to quantify the anticipated performance of
Thematic Mapper (TM) data for delineating renewable earth resources. A compre-

hensive literature review for TMS studies can be found in Iron's report (1982).

The majority of these investigations have focused primarily on agriculture,

forestry, and general land cover mapping. For example, specific crop types
identification was improved, ranging from a factor of 3 for corn to 1.4 for

soybean (Sigman and Craig, 1981). A 21% improvement in TMS over MSS was
found for specific forest types, in contrast to only 6% for broad cover types

by Dottavio and Williams (1982). Others have observed a relative overall
improvement of approximately 12% for general land cover mapping (Gervin,

et al, 1982; Robinson, et al, 1982).

This investigation was sponsored by the Test and Evaluation Program under the
auspices of the Eastern Regional Remote Sensing Applications Center (ERRSAC).
TM and MSS data were evaluated separately by comparing the classified thematic

results with the Level I (Anderson, 1976) ground verification data (GVD).

Understanding relative classification success at the top of the land cover

hierarchy i_ of particular interest since some form of general land cover cate-

gorization will provide the foundation for future investigations of regional
and global dynamics. Although not expected to be optimal for TM data, this

relative assessment of MSS and TM for general classification accuracy using

standard c!assiflc_tlon techniques and standard categories should provide at

least a minimal estimate of the relative improvement afforded by TM.
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METHODOLOGY

i In order to ensure comparability of results, the same analysis procedureswer_ used for both MS_ and TM data sets. Those consist of procedures to
+ _stablish digital ground verification data (GVD), to process the sensor

I digital image data, and to compare the classified image data acquired from
i tlleLandsat sensors and the GVD.

1 Ground Verification Data (GVJ).[

if The four USGS 7.5-minute topographic quadrangle maps (1:24,000 scale) used
:,_ for accuracy assessment in this study ware a subset of 12 randomly selectedI

quads from a related project for which ground truth data were available within
". the Washington, D.C. MSS scene area. The four 7.5' quads - Catoctln Furnace,

Woodbine, Baltimore East, and Galena - were chosen to provide a represente-

.I rive progression of different landforms and cover types, ranging from the
coastal plain and agricultural region of Marylandts Eastern Shore to the

,_ forested slopes of the Catoctin Mountains.

ti Color infrared (CIR) aerial photographs taken en 12 April 1977 (scale approxl-merely 1:60,000) were used to phetolnterpret Level I land cover categories

for each of the quads. Polygons representing unique land cover areas were
traced on mylar acetate overlald on each of the USGS maps and assigned to
one of six Level I categorles: developed, agrlculture (ag)/grass, forest,

i water, wetlandp or barren. After each map was photointerpreted and a quality
check completed, a wlndshleld survey was conducted to assess and update the

!:_I photofnterpreted data. The field visits were necessary to account for land
cover changes which took place between the April 1977 date of the aerial

i_!i photography and the November 1982 TM and MSS image date.

ComputerProcessing
!_ After the photolnterpreted data were fleld-checked, the land cover overlays
!i_ .......... were digitized and labelled by Level I land cover category using the Geographic
:4

-{ Entry System (GES). These polygonal vector data were later rasterlzed to image
_.'.! format. These steps were accomplished with the GES and the Interactive Digital

:/_ Image Manipulation System (IDIMS) software on the ERRSAC HP-3000 minicomputer.

i!_Ii Once in image format, the GVD could be compared with the MSS and TM classifi-
cation results. The proportion of eac:_Level I cover type is given for each

;:;_" of these study areas in Appendix A.

,_ Registration. For the registration process, the areas corresponding to the
four USGS 7.5-minute topographic quadrangles chosen for the accuracy assessment

--_ were subset from the MSS and TM data sets. Separate sets of control points
_ (30-40 per quad) were selected on each map/image pair in order to relate the

data sets to Unlversal Transverse Mercator (UTM) coordinates. Once the control

_j points were digitized using the Geographic Entry System (GES) software, three

programs were run to geometrlcally correct and rescale the TM and MSS image
data. The functions are ALLCOORD; which accesses the map points from a GES
file and locates them on a UTM grid with specified cell size (in this case
30-meter square for TM and 60-meter square for MSS); TRNSFORM, which generates
transformation equations relating map points to image points up to a thlrd-order
polynominal fitting; and REGISTER, which perfo_ns the actual image-to-map regls-
tratlon with a nearest neighbor interpolation according to the transformation

_ equatior.s. Both data sets for each of the quads (eight total operations) were
registered in this manner. Typical error residuals associated with the

registration were + 1.5 pixel for MSS and + 1.0 pixel for TM data.
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Classification Procedures. A conventional, well_documonted unsupervised

methodology (m_e Imhoff, Witt, Kugalmann, 1981) was u_d for image classlflcatlon
of th_ MSS and TM data. Th_ l,aramet_r snttlngs were identical for the TM and

MSS pro_ssing. This approach does not explore improvements in accuracy which
might be gained from TM with innovative classlfier_ (i._., contextual) but docn

allow a det_mninatien of the minimum gain in accuracy, relative to MSS with a

classification procmdure optimal for elasslfyln8 M_;S data.

A 7.5' quadrangle adjacent o each of the four randomly sol,=ted accuracy

_ quadrangl_s was selected for signatur_ extraction and training purposes.
This was done to assure that signatures were developed from one data subset

and evaluated in another. The raw data from thesQ four training quadrangles

were extracted and mosaicked together, producing a single seven band image.

The thermal data (band 6) were resampled to 30m. Thls image was then input to

the unsupervised clustering algorithm (IDIMS' function ISOCLS) set to identify
= maximum of 64 spectral clusters. Each resultlng cluster was assigned to

one of six land cover categories in an interactive mode on a color CRT using

the 1977 CIR aerial photography as ground truth information. The 4 accuracy
assessment images were then processed using a maximum likelihood classifier

which assigned each pixel to one of the 64 spectral clusters. Clusters/

land cover assignments were made accordlng tc the labelling scheme previously
determined.

Contingency Tables. Both the MSS and TM classification results were compared
with the ground verification data on a pixel-by-pixel basis using the IDIMS'

program CONTABLE. This program creates a contingency table showing agreement/

disagreement between all categories or classes from two different images.

The matrix diagonal shows the number and percentage of Landsat classification
pixels which are assigned to the same category as the GVD and therefore

correspond. Ali of the statistical results presented in the following
section are derived either directly or indirectly from these matrices. The
original eight contingency tables (four MSS & four TM), have been combined into

one contingency table each for TM/GVD and MSS/GVD. These aggregated four
quad results are presented In Appendices B and C.

Accuracy Assessment

Since accuracy is reported many different ways in the literature, for clari-

flcation the computations for accuracy utillzed here are defined. Accuracy

or rather classification success, is considered here tO be the proportional
correspondence of the sensor classi_icatlon to the GVD. Thls distinction is

made because the GVD and sensor classifications may represent different
measures of the same thing.

The accumulated four quadrangle results presented in the contingency tables

(Appendices B and C) were analyzed to determine the relative correspondence
of TM and MSS data with the GVD, and the associated errors of omission and

commission per category. For this purpose the contingency tables were
tabulated according to the general form illustrated in Table 1.

The computations for accuracy (computed here using 2 different approaches)

and for errors are described below. The symbols in the equations refer to those
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presented in Table l whar_ for csteSory n,

Gn - _ subCoCal,

Ln - Lsndsst subtotal,

Ann portion of L corraspondlnj to G,

On . portion of L omitted from O,

Cn = portion of G incorrectly classified by Lm
m_d, n n

ZG = EL are the &rand totals sunned over all rows sad columns.
1 1

Table I

GENERAL¥OI_HOF CONTINGSHCYTABLES
FOR COMPUTATIONALPURPOSES

I GVD Pt_L COUNT
TO_'_.

A C
t A¢¢_I_tY COHI_ITTEt)PIXEI.¶ Lt

CLkSStFi(DI '1 °
CkTE_b_le_.

'I'oTAt. ,.,_-4 _0_ G Fo_ G- t.BVD oT_-Rc_'r_Qo_t;s
AR_ TOTAL ji i

I
I
t

Accurlcy - Approach 1. Accuracy i8 computed as the percent of the sensor
clusificatton vhich ajreee vtth the GVD. This Is couonly referred to as
the "percent correct". Errors of omission In the uaismnent of _D by a
sensor classification can be derived as IOOX- X correct, and comprise IOOZ
of the cateSOriZation error associated vith this approach.

A
._.L

o For each cate8ory, the I correspondence, AIn G x 100. (1)
n
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n
EA

o The comp_eheusivn accuracy over all 1 n
categories, or the _ correspondence, A1 - n_ x 100 (2)

1 n

Those statistics wer_ computed for each individual quad and for the fo.r
! quad dace a_t, and arc given _n Table 2.

: Accuracy=Appronch_2. Accuracy hor_, referred to as percent tnapptng capab_lity,
is conceiwd as che intersection of two seta whore the first is the GVD

categorization and the second is the sensor classification. The overlap in
these two sets represents th_ correspondence (or correctly classified) portion
and equals the g correct computed in approach 1. However, the accuracy
computed _Iso includes that portion of the sensor elassiflcation that does not

correspond to the GVD; this is the portion that was incorrectly assigned by I
the sensor to a category.

o For each category, the _ mapping capability,

A2 = (A + 0 + C)n x 100.

{For each category (n), A2n is equivalent to:
A
n

x 100. )
(L - A)n + (G - A)n + An

o The comprehensive accuracy over all categories, or the

mapping _apability,
ZA
1 n

A2 = x 100. (4)n

z (A+ o + c)n
1

These statistics were computed for the four quadrangle data sat only
(Appendices B and C).

Errors

Errors in the GVD coding process (i.e., photolnterpretation _nd d±gltlzatlon),
errors related to mlsregistratlon; and errors in the sensor ¢lass_flcatlon process
(i.e., cluster assignment) were not addressed in this anal_s£s. Errors of
interest here were the errors of omission, those GVD plxels not Included in the
appropriate category by the sensor class_catlon; errors of commission, those
GVD plxels incorrectly assigned to a cal y by the sensor classification; and
total error for both omlsslon and commi :. •

: 0
= O - A • (5)• o The g error of omission, E1 = O x 100, where On n n

__n_n =L -A. (6): o The Z error of commission, E2 - L x 100, where Cn n nn
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Total orror for approach 1 is wholly dun tO errors of omission and can saltily
ba computed as I00% - % "correct" from alther aquatJ.ons (i) over an Jndlvldual

catt_gory, or (2) over all catogorlas.

Total error for approach 2 ia dol:orminod similarly for all cats[dorian takLm
togol:l._r ao 1.00% - % mapp:lng capability from aquaS.ton (4). Tonal orr(:,r
p.r _,at.p, ory 1. I:lm mtm of the error of olalaulon and commiaflif, n,

Rl,',filll,Tfi

Tho mm',lyn,lrl demolm_rato_ that for CI|_ 'l'M/M,_,'._dana past _nudiad, tim Low_ !
land rover c at'egori._at:lon derived from tim 'i'M was superior to that derived
from .tt:n compani,oa M_S. The _M produmad l|_,gll¢_r comprah,_nsivo accuracies8
t:hau d,ld tim MS_ and h*lgher accuracies for the indiv_,dual cover typ,,_ a_ well,
toldIn general lower category ass_,gnmont erro_ (as measured by c,_'r-_:_l)ondeacu
to the GVD).

Considering the relative accuracies and both typos of errors tog_th_r_, _wo
categories (wat,_r and wetlands) are similar for the TM ar,d MSS clam,iflcations, j

Forest, at/grass, and developed are all improved with TM: forw_t hL:_.A_Pits :1
from a decrease in omission orrors; at/grass from large decr_asQs ix,¢,vrors
of omlssion_ which togetherwith commls_ion errors are 217,lower thas with ....

MSS; while developed benefits from largo decreases of commission, wlllch

together_ with omission errors are 38% lower than corr_spondlng MS3 .._.rers.

The barren/extractive and wetland categorlos, which represented only _,8%

and 0.!% respectively of the four quadrangle area (See App_ndlx _), produced
unacceptable accuracies [or both TM and M$S. TI,o classification _.:'cces,_

of these two categories was zero for barren/extractlve mid 53.6/50.9% (TbI/MSS)

for wetlands. Thla compares with 47.4% and 4.8% r_sp_ctlvoly for the_

categories with July 1981 MSS data fcr these same aroas (Oervln, .¢!_o_J,1983).
November may be a better time than stunmer to obse_rvo wetlands, although

the correspondence rates with the GVD are still not good. At that. t_.me of
year it is not passible to spectrally distinguish the true barrer_/extractlve

category from seasonal]y bars fields under agricultural use.

Accuracy Assessment - Approach i

The comprehensive accuracy computed over four quads and six cover types as the

percent correspondence, or % "correct" with the GVD (approach 1), was 79.2%
for TM versus 68.2% for MSS (Table 2). For both TM and MSS, the l_--est

accuracy among the major categories was recorded for developed (6), '.,/60.6%),

the highest for forest (87.5/80.0%). Although higher for TH, accu_ales
for all but one category are not markadly different betwsen TM an.l'..oSfor

the individual cover types when computed this way. This is ospec_ally

apparent in the TM/MS8 ratios which are close to 1.0, with the cxcoptlon of
-g/grass. A 16.4% or factor of 1.25 Improvemon_ for that category with TM
brings its accuracy into the acceptable 80% range.
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Tabl_ 2

TMVB. MBSI ACCURACY A_ PERCENT CORRECT (APPROACH I)

(PERCENT CORREiPONDENCE WITH GROUND VERIFICATION DATA)

USGS 7 1/2' L_vP.1 I Land Corot Catp_p_y* _)__ OVERALL
,QUADRPJYGLE SLNSOR D A/G F W Wt B CORRESPONDENCE

Baltimore East L-4 Mils 62.6 45.6 32.4 78.7 --- 0 61.0 _

L-4 TM 67.9 48.0 45.5 76.7 --- 0 65.8 ,i

Woodbine L-4 MSS 13.2 63.5 80.7 2.6 ...... 68.1 J
L-4 TM 8.5 74.0 86.5 33.7 ...... 76.8

Catoctln Furnace L-4 MilS 16.1 61.8 88.7 1.8 ...... 75.4
L-4 MSS 16.6 77.6 95.0 12.8 ...... 85.7

Galena L-4 MSS 46.9 68.8 62.6 81.5 50.9 0 68.4

L-4 TM 27.2 92.5 73.7 88.2 53.6 0 88.6

Over All 4 Quads 60.6 64.4 80.0 75.9 50.9 0 68.2
65.5 80.8 87.5 79.1 53.6 0 79.2

Difference (TM - MSS) +4.9 +16.4 +7.5 +3.2 +2.7 0 +ii.0

Ratio TM/MSS 1.08 1.25 1.09 1.04 1.05 0 1.16

_KE__/Y
D - Developed; A/G = Agrlculture/Grasslands; F = Forest; W ffiWater;
Wt = Wetlands; B =,Extractlve/Barren

Accuracy Assessment -Approach 2

When accuracy is computed as the overlap in the GVD and Landsat categorizations
(approach 2), which considers errors of cou_ission in the sensor classification

in addition to the errors of omission of GVD, considerably lower comprehensive
accu_acles of 65.5% for TM and 51.8% for MSS result (Table 3). A larger
discrepancy between the TM/MSS results with Approach 2, 13.8% versus 11.0%
using approach 1 above, is due to lower TM rates of commission for a single

category, developed. Again, the low_st accuracy among the major categories
was recorded for developed with both sensors (59.2% TM; 39.0% MSS), but the
highest accuracies now were in the ag/grass category (72.7%) with TM and water
(70.9%) with MSS.
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Tabln 3

TM VS. MSS' ACCURACY AS PERCENT MAPPING CAPABILITY (APPROACH 2)

(PERCENT CORRESPONDENCE IN SENSOR AND GVD CLASSIFICATIONS)

Level I Land C__ Overall

Relative Value D A/_q F W Wt B Corres_oond_nce

MSS 39.04 56.60 58.98 70.86 1.78 0 51.78

TM 59.22 72.73 62.31 71.78 2.87 0 65.62

Difference +20.18 +16.13 +3.33 +0.92 +1.09 0 :-13.84
(TM - MSS)

Ratio TM/MSS 1.52 1.28 1.06 1.01 1.61 0 1.27

As with approoch 1 above, the accuracies for most categories are all sl_ghtly
higher with TM. Approach 2 yields similar results for three categories and

reproduces the 16% improvement for the ag/grass category observed with approach

i. This is apparent from the ratios which are near 1.0 for forest and water

and equal to 1.28 for ag/grass. (The computed value for wetlands is not
meaningful due to sample size). In addition, a striking 20.18% improvement

In the developed category versus 4.9% with the correct GVD approach, or
a 4:1 increase in the TM-MSS difference, is revealed. This translates into

a TM accuracy 1.52 times that of the MSS for the developed category. Errors

of commission are therefore especially important in evaluatlng the classi-

fication success of this category.

Errors of Omission and Commission

An analysis of the errors of omission and commission by cover type is given
in Table 4. Omission rates are lower for all categories with TM and especially

notable for ag/grass (-16.4%) and forest (-7.6%). The commission rates are

relatively similar with TM and MSS for forest, water, and wetlands, although

slightly (1-3%) higher with TM. However, the commission rate is noticeably

lower for ag/srass (-5.6%) and substantially lower for developed (-33.7%). In

the latter category, this represents a factor of 3.43 reduction. Note that
small reductions with TM in errors of omission for water _nd wetlands are

essentially offset by small increases in errors of commission.
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Table 4

TM VS. MSS: ERRORS OF OMISSION AND COmmISSION

Relatlve

Type Value D A/G F W Wt B

Omission MSS 39.43 35.62 20.02 24.10 49.13 ---

i Error
TM 34.51 19.25 12.47 20.90 46.43 ---

Difference -4.92 -16.37 -7.55 -3.20 -2.70 ---

(_ - _ss)

Ratio MSS/TM 1.14 1.85 1.61 1.20 1.06 ---

;} Commission
' Error MSS 47.65 17.59 30.80 8.56 98.19 ---

i_, TM 13.91 12.00 31.62 11.42 97.05 ---
Difference -33.74 -5.59 +0.82 +2.86 +1.14 ---

(TM- MSS)

: Ratio MSS/TM 3.43 1.47 0.97 0-75 1.01 ---
i

Total Errors Over All Categories

(Omission and Commission)

MSS 31.77 Difference (TM - MSS): - 11.03

TM 20.74 Ratio MSS/TM: 1.53

DZSCUSSION/SUMMARY

The relative classification results are summarized in Table 5, w_ich highlights

the comparative accuracies and errors for TM and MSS. The most important

overall finding from this study is that TM data do provide a considerable

improvement over MSS in classi_icatlon success for Level £ categorization of
land cover. Characterization of this difference was best accomplished

using an accuracy computation which included errors of omission and commission

(Approach 2). In that case, a relative accuracy increase of almost 14% was

observed with TM. The ]1% improvement shown using the more commonly reported

approach 1 boosted the overall accuracy from 68% (MSS) to 79% (TM)_ despite

the less than optimal November data and the use of broad cover categories. Growing

season dates are mandatory to evaluate whether thla dlffereutlal between TM and MSS

remains or even is enhanced under more favorable seasonal data acquisition. However,

the results are consistent with thuse _xpected from previous TMS studies (Dottavlo
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,_ and Williams, 1982; Gerwin, at al, 1982; Robinson, et al; Sigman and Craig, i

!l 1981) and other TM investigations for specific Level II cover categoriesr

-_ reported at these Landsat-4 Early Results Symposium (Bizzell and Prior,• r

i I
_, 1983; Markham ]983; Pitts, 1983; TolL, 1983). This paper is one of the few

i _! presented at the Symposium to directly address generel land cover mapping

•_ Success.
j

".-. The very large sample size used here should provide further support of the

_:. validity of the results. The results were found to be statistically slgnlfi-
:_ cant, but these and other related analyses will be reported elsewhere.

4

::, Table 5

;..... TM VS. MSS: COMPARATIVE CLASSIFICATION SUCCESS

Classification Accuracy Classification Error

!_ (Correspondence to GVD) (Moncorrespondence to GVD)

_; Land %Diff. Ratio %Diff. Ratio %Diff. Ratio %Diff. Ratio

_I Cover TM - MSS TM TM - MSS TM TM- MSS MS___SS TM- MSS MS___SS

Types MSS MSS TM TM

D +4.92 1.08 +20.28 1.52 -4.92 1.14 -33.74 3.43

!I A/G +16.37 1.25 +16.13 1.28 -16.37 1.85 -5.59 1.47

_ F +7.55 1.09 +3.33 1.06 -7.55 1.61 +0.82 0.97

, _ W +3.20 1.04 +0.92 1.01 _3.20 1.20 +2.86 0.75

=:I Wt +2.70 1.05 +1.09 1.61 -_.70 1.06 -1.14 1.01

!-._ B 0 0 0 0 0 0 0 0

_ _ Over All +11.03 1.16 +13.84 1.27 RATIO (MSS/TM)31.77
ii Categories TOTAL ERROR .... 1.53

!_. 20.74

'_ The measured improvement in TM over MSS for this November date was almost
i _', entirely due to improvements in three categories--developed, ag/grass, and

_ forest, for which the net reductions in error from omission and co_isslon

: with TMwere 38.7%, 22.0%, and 6.7% respectively. The reduction in the

errors of commission for the developed category are particularly impressive at

3_.7%. This gain in accuracy for the developed category can probably be att@i-

._ buted as much to th_ spectral as to the spatial domain. This is shown in

.: the two quads with localized urban areas for which relatively small improve-

....._ merits were made; in the 2 rural quads, where developed areas were represented

primarily by low density resldentlal, the accuracies for TM were conslderably
5 less. This is because vegetation was correctly classified in the TM data in

:_ these rural situations, but the thematic results showed low correspondence

to the general GVD. Here, the GVD were not a good measure of TM classification
i _ success.
!.,
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It should be realized that G%_ of any kind have inherent limitations. The

GVD here were originally defined at approximately a 20m _,patlal resolution;
finer spatial resolution features were not identified. The Level I land

use/cover scheme traditionally used by land use planners and employed here
produces categories based primarily on land use and secondarily on cover. By

definition, these categories are heterogenous in terms of spectral (and

spatial) characteristics of the actual cover. This problem is especially
severe in the developed and ag/grass categories. For the developed category,

. for example, whole subdivisions, with the exception of contlgous forested

land and open space, were given this general designation, a practice con-
sistent with the Level I use/cover scheme. Further categorization of

the subdivision into its cover components - yards, housing, roads and driveways,
etc. was not attempted due to pragmatic considerations. These included

the considerable additlonal burden of photolnterpretatlon, ground verification,

digitization, and problems with image misregistratlon at that level of
detail.

The results for the barren/extractlve category hlghllght the limitations of

a categorlzat%on scheme based primarily on land use. It is more meaningful to

scientists interested in biophysical relationships of terre_trlal systems to

call lands without vegetative cover "bare" than to designate them as agriculture.

Cover deslgn_tlons which change seasonally are disconcerting to planners,

but hlghly relevant for describing dynamics (i.e., energy balance).

CONCLUSIONS

For these data:

o TM outperformed MSS overall by an 11-14% margin in terms of Level I

classification success. This represents a factor of 1.27 improvement
in overall accuracy based on 1.53 reduction ir_ total classification error.

o Both errors of omission and commission were found to be important for the
characterization of this success.

o The developed category, though still exhibiting the lowest overall accuracy
for a major land cover type, benefited the most from the improvements asso-
ciated with TM.
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Appendlx A

GROUND V_RIFICATION DATA; PHOTOINTERPRETED LEVEL T LAND COVER

USGS 7 1/2' % LAND COVER IN LEVEL I CATEGORY Extrec-

QUADRANGLE Developed Ag/Grass Forest Water Wetlands rive

_ 1) Baltlmore 77.3 9.4 4.4 8.8 .... 0.1
East

2) Woodbine O.8 64o4 27.4 0°1 .... 7•2

3) Catoctin 2.5 40.0 56.7 O.8 .....
Furnace

4) Galena 0.7 74.4 17.1 7.3 0.6 0.0

Over All 20.4 47.1 26.3 4.3 0.1 1.8

4 Quads

Appendix B

CONTINGENCY TABLE' (GVD VS. TM CLASSIFICATIONS)

_VDPixel Count X Error

Category D A/G Y W Wt B Total Commission
.,, l

D 88790 8822 2951 2413 14 144 103134 13.91

u A/G 20073 258863 14328 824 84 54 294226 12.00

o F 20764 47245 149345 861 184 11 218410 31.62U

W 1634 292 837 22218 i02 0 25083 11.42
Wt 4322 5332 3153 1773 443 14 15037 97.05

B 0 0 0 0 0 0 0 0

Total 135583 320554 170614 28089 827 223 655890

Z Error 34.51 19.25 12.47 20.90 46.43 100.0 20.74Z Total
Omission Error

_Mapping
Capability 59.22 72.73 62.31 71.78 2.87 0 65.7g Overall
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Appendix C

CONTINGENCY TABLE: (GVD VS. MSS CLASSIFICATION)

GVD Pixel Count % Error

CATEGORY D A/G F W Wt B Total Commission

D 20558 15121 2983 570 18 22 39272 47.65

A/G 6587 50423 3961 181 6 30 61188 17.59

O
o F 4074 11147 35035 284 83 5 50628 30.80

W 359 32 106 5375 6 0 5878 8.56
..4

Wt 2361 1597 1721 672 117 0 6468 98.19
tO

B o o o o o o 0 o

Total 33939 78320 43896 7082 230 57 163434

% Error 39.43 35.62 20.02 24.10 49.13 100.0 31.77
Omission % Total Error

% Mapping 39.04 56.60 58.98 70.86 1.78 0 51.78

Capability _ Overall

IV-446

O0000005-TSF08



q

N

Index of Authors

Proceedt ngs** _ Proceedt ngs**
Authors volume _ Volume Page Authors Volume _ Volume

Abrams, R. I 90 II 47 Chavez, P. II 33 III 471
I 116 II 147 Ctcone, R. II 28 III 443

II 373 Colltns, A. I[ 22t
Abrams, M. IV 127 Colwell, R. II 98 IV 91
Ackleson, S. I1 137 IV 325 Cone1, J. II 109 IV 127
Aeplt, T. I 15 Crtst, E. II 28 III 443
Alford, W. II 69 I 1 Dean, E. II 1 III 321

II 85 I 9 OeGloria, S. II 98 IV 91
I 143 Oeschamps, P. II 21

Amts, H. II 60 IlI 571 DeVrtes, O. II 62 I 133
Anderson, J. II 82 1 119 III 581
Anderson, W. II 129 IV 281 Dickinson, K. I 189 [II 257
Anuta, P. II 1 III 321 Dtngutrard, M. I1 15 III 389

II 53 III 527 Dozier, J. II 142 IV 349
Baker, J. II 149 IV 369 Duff, P. I 190
Ball, D. [ 90 I 25 Duggtn, H. II 64

I 116 Oykstra, O. II 103 IV 119
. I 130 II 47 Eltason, E. II 33 III 471

II 147 Engel, J. I 41
II 277 I 65
II 373 Evemtt, J. II 103 IV 119

Baltck, L. II 129 IV 281 Ezra, C. II 15 III 389
Barker, J. I 90 I 23 Falcone, N. III 497

I 116 Feuquay, J. II 129 IV 281
I 127 II 1 Ftschel, 0. I 106 i
I 130 II 47 Fttzerald, A. I 190 II 275
I 140 II 147 FlemtnD, E. I 189 III 257
I 186 II 235 Friedman, S. II 46

II 73 II 277 Fusco, L. I 199 III 309
II 373 11 7 III 359

izz z zi 40 i
III 233 Gayler, J. II 149 IV 369

Bartoluccl, L. II 1 III 321 Gervtn, J. II 167 IV 415
Batson, R. II 59 IlI 565 IV 421
Bender, L. II 35 Ill 497 Gtllespte, A. IV 127
Bennett, D. II 81 I 77 Gokhman, B. 11 46
Bemstetn, R. I 108 IV 25 Goodenough, D I 189 II 22I
Bayer, E. I 92 II 87 III 257
Btzzell, R. II 113 IV 153 Guertln, F. II 81 I 77

I1 133 IV 299 II Z21

Blodget, H. II 160 IV 403 Gunther, F. I 116 II 147
Boatwrtght II 141 IV 337 Gurney, C. [I 50 III 513
BorDeson, W. II 59 Ill 565 Haas, R. II 129
Brooks, J. I lO1 I 177 Hall, J. II 55 Ill 553

II 91 II I13 IV 153
Brumfleld IV 403 Hardisky, M. I1 121 IV 251
Bryant, N. II 46 Hardy, J. II 149 IV 369
Butlln, T. I 190 Haydn, R. II 116 IV 211
CaR, D. II 55 III 553 Henderson, K. II 148 IV 359
Carnes, J. II 113 IV 153 Holm, R. !I 15 Iit 389
Castle, K. II 15 Ill 389 Houston, A. II 148 IV 359

IV-447

'_ _ :: _' ....... : '_.......... ...... ° "" . _ .' '_" ._;._. ': "_,,.7 ;. : . "......

.......... " '"°..... 00000005 TS., - F09



L

'" Index of Authors

Summa_j* Proceedt ngs** Summa_J* Proceedl ngs**
Author._ Volume _ v-6_luine- Pa_ Authors V*olume- _ _VoYume

Hovls, W,, II 20 III 4II Hertz, F. [I 55 III 553
Imhoff, M. II 69 I 1 Metzler, M. II 23 Ill 421

I 9 Mtddleton, E. II 171 IV 431
I 143 Mtmms, D. I I 35

Irons, J. I 62 II 15 II 85 I 9
I I 93 IV 7 I 143
II 116 IV 237 Mulligan, P. IV 415

Jackson,M. II 149 IV 36g Murphy, J. I 190 I 77
Jackson, R. II 15 III 389 II 81 III 275
Jones, O. II 35 III 497 Nelson, R. II 93 IV 7
Justice,C. I 199 III 309 II I16 IV 237
Kahle, A. IV 127 Palmer, O. II 15 Ill 389
Kastner,C. II 15 llI 389 Park, W. III 275
Kieffer,tI. II 33 III 471 Paylor, E. II log

__ Kimmer, E. II gl I 177 Pltts, O. 11 113 IV 153
; Klemas, V. IV 261 II 148 IV 359

_:.:._: II 137 IV 3Z5 Price, J. II 128 IV 271
.. ' Kogut, J. II 54 III 537 Prior, H. II 133 IV 299
: _ Lang, H. II 109 IV 127 Podwysocki,M. II 35 III 497
=_ Lansing,J. I 186 III 233 Quattrochl,D. II iii IV 131
- Larduinat,E. II 54 llI 537 Rasool, S. II 21

Latty, R. II 93 IV 7 Reyna, E. II 113 IV 153
II 116 IV 237 Rice, O. II 76 I 57

;:: Lauer, D. II 129 IV 281 Rltchle, J. II 141 IV 337
Leung, K. I 90 II 47 Sadowskt, F. II 129 IV 281

I 130 II 277 Salisbury, J. II 35
• II 373 Savage, R. II 1S III 389
• Likens, W. II 87 I 15g Schlebe, F. II 141 IV 337
: Logan, II 46 Schoch, L. II 64

Lotsptech, J. I 108 IV 25 Schott, J. I 181 III 221
Lozano, F. II 1 Schowengerdt,R. II 32 III 467 ..
Lu, Y. II 167 IV 415 Seevers, P. II 12g IV 281

IV 421 Sekhon, R. II 17! IV 431
IV 431 Sheffield,C. II 103 IV ll9

Lyon, J. I 106 Short, N. II 114 IV 163
Malaret, E. II I Ill 527 Slater, P. II 15 III 389

II 53 Sorensen, C. II 113 IV 153
Mallla, W. II 23 I 57 Stauffer, q. II 93 IV 7

II 76 III 421 II 116 IV 237
Marcell, R. II 160 IV 403 Strome, W. I 120 II Z21

II 167 IV 421 Stu rdevant, J. II 129 IV 281
Markham, B. I 127 Su, J. lI gl I 177

II 73 I 23 Thompson, D. IV 359
II 93 II 1 Thomodsgard, J 1I 62 I 133
II 116 II 235 III 581
II 135 IV 7 T011, O. [ 93 IV 7

IV 237 I 116 IV 237
: IV 313 I 153 IV 387
, MacDonald,R. II 113 IV 153 Townshend, J. II 149 IV 369

McGlllem, C. II I III 527 Trevese, D. II 7
II 53 Usery, E. II 83 I 123

,-... Mehl, W. [ 199 Ilk 3O9 Valdes, J. II I
i I!I 359

IV-448
:i

' oU.S.GOVIEILNMET_TPRIItrlNGOFFICIs:Z9_5 -5_? -03_/ _5 REGIONNO._I

: ' '' " "" " 0 " ' .... '; O0000005-TS F 10



: Index of Authors

Summary* Proceedl ngs**
Authors Volume _ Vblume" _

.o

.:., Valenzuela, C. [I 1
_:_ Walker, J. I 130 11 277

Walker, R, II 46
" Waltz, F. II _g IV 281
_. Webb, W, I 1
t- Welch, R. II 83 I 123
"_'" Williams, D. II 93 IV I
" .': II 119 IV 7

.: IV 237
Witt, R. II 160 IV 403c

._ II 171 IV 43_
_....... Wrigley, R. II 55 I 159

-..'. II 87 III 553
,.. Yao, S. II 60 III 571

% _. II 113 IV 153
- YU, K. II 53

_,:,. Zobrlst, A. II 46

.% :
.,.:.

* Landsat-4 Science InvestigationsSummary, John L. Barker, ed., 2 volumes--5*"

_.:_,:. (NASA Conference PublicationCP-2326) available throu9h Government Prln-
_!; tlng Office, National Technical Information Service (NTIS). Accession
_ Numbers N84-30359 and N84-30380 5285 Port Royal, Springfield,VA 22161,
_::? Phone 800-336-4700 or (703) 487-4650.

-_" ** Landsat-4 Science CharacterizationEarly Results, John L. Barker, ed., 4
=_, volumes NASA Confefence Publication.

%

... IV-449

®

O0000005-TSFll


